blob: 32ea1431a4a8ff930b180748ce1c13a1d16272bf [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <functional>
#include <random>
#include <string>
#include <vector>
#include <cpuinfo.h>
#include <xnnpack.h>
#include <benchmark/benchmark.h>
#ifdef BENCHMARK_TENSORFLOW_LITE
#include "flatbuffers/include/flatbuffers/flatbuffers.h"
#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/kernels/register.h"
#include "tensorflow/lite/model.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#endif // BENCHMARK_TENSORFLOW_LITE */
#include "bench/utils.h"
void xnnpack_deconvolution_q8(benchmark::State& state, const char* net) {
const size_t batch_size = state.range(0);
const size_t input_height = state.range(1);
const size_t input_width = state.range(2);
const size_t kernel_height = state.range(3);
const size_t kernel_width = state.range(4);
const size_t padding = state.range(5);
const size_t adjustment = state.range(6);
const size_t stride = state.range(7);
const size_t dilation = state.range(8);
const size_t groups = state.range(9);
const size_t group_input_channels = state.range(10);
const size_t group_output_channels = state.range(11);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), rng);
const size_t output_pixel_stride = groups * group_output_channels;
const size_t input_pixel_stride = groups * group_input_channels;
const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1;
const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1;
const size_t padding_left = padding / 2;
const size_t padding_top = padding / 2;
const size_t padding_right = padding - padding_left;
const size_t padding_bottom = padding - padding_top;
const size_t output_height = std::max(stride * (input_height - 1) + adjustment + effective_kernel_height, padding) - padding;
const size_t output_width = std::max(stride * (input_width - 1) + adjustment + effective_kernel_width, padding) - padding;
std::vector<uint8_t> input(batch_size * input_height * input_width * input_pixel_stride);
std::generate(input.begin(), input.end(), std::ref(u8rng));
std::vector<uint8_t> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels);
std::generate(kernel.begin(), kernel.end(), std::ref(u8rng));
std::vector<int32_t> bias(groups * group_output_channels);
std::generate(bias.begin(), bias.end(), std::ref(s32rng));
const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride;
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
if (!cpuinfo_initialize()) {
state.SkipWithError("cpuinfo initialization failed");
return;
}
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (kernel.size() + bias.size() + output_elements));
std::vector<uint8_t> output(output_elements * num_buffers);
std::vector<xnn_operator_t> deconvolution_operators(num_buffers);
for (xnn_operator_t& deconvolution_op : deconvolution_operators) {
status = xnn_create_deconvolution2d_nhwc_q8(
padding_top, padding_right, padding_bottom, padding_left,
kernel_height, kernel_width,
stride, stride,
dilation, dilation,
groups, group_input_channels, group_output_channels,
input_pixel_stride, output_pixel_stride,
127, 0.5f, 127, 0.5f,
kernel.data(), bias.data(),
127, 0.5f, 0, 255,
0 /* flags */,
&deconvolution_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to create QINT8 Deconvolution operator");
return;
}
}
for (size_t i = 0; i < deconvolution_operators.size(); i++) {
status = xnn_setup_deconvolution2d_nhwc_q8(
deconvolution_operators[i],
batch_size, input_height, input_width,
0 /* height adjustment */, 0 /* width adjustment */,
input.data(), output.data() + i * output_elements,
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to setup QINT8 Deconvolution operator");
return;
}
}
size_t buffer_index = 0;
for (auto _ : state) {
state.PauseTiming();
benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(uint8_t));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
status = xnn_run_operator(deconvolution_operators[buffer_index], nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run QINT8 Deconvolution operator");
return;
}
}
for (xnn_operator_t& deconvolution_op : deconvolution_operators) {
status = xnn_delete_operator(deconvolution_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete QINT8 Deconvolution operator");
return;
}
deconvolution_op = nullptr;
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["OPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 *
batch_size * input_width * input_width *
groups * group_input_channels * group_output_channels *
kernel_height * kernel_width,
benchmark::Counter::kIsRate);
}
void xnnpack_deconvolution_f32(benchmark::State& state, const char* net) {
const size_t batch_size = state.range(0);
const size_t input_height = state.range(1);
const size_t input_width = state.range(2);
const size_t kernel_height = state.range(3);
const size_t kernel_width = state.range(4);
const size_t padding = state.range(5);
const size_t adjustment = state.range(6);
const size_t stride = state.range(7);
const size_t dilation = state.range(8);
const size_t groups = state.range(9);
const size_t group_input_channels = state.range(10);
const size_t group_output_channels = state.range(11);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
const size_t output_pixel_stride = groups * group_output_channels;
const size_t input_pixel_stride = groups * group_input_channels;
const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1;
const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1;
const size_t padding_left = padding / 2;
const size_t padding_top = padding / 2;
const size_t padding_right = padding - padding_left;
const size_t padding_bottom = padding - padding_top;
const size_t output_height = std::max(stride * (input_height - 1) + adjustment + effective_kernel_height, padding) - padding;
const size_t output_width = std::max(stride * (input_width - 1) + adjustment + effective_kernel_width, padding) - padding;
std::vector<float> input(batch_size * input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(float));
std::generate(input.begin(), input.end(), std::ref(f32rng));
std::vector<float> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels);
std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
std::vector<float> bias(groups * group_output_channels);
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride;
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
if (!cpuinfo_initialize()) {
state.SkipWithError("cpuinfo initialization failed");
return;
}
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (kernel.size() + bias.size() + output_elements));
std::vector<float> output(output_elements * num_buffers);
std::vector<xnn_operator_t> deconvolution_operators(num_buffers);
for (xnn_operator_t& deconvolution_op : deconvolution_operators) {
status = xnn_create_deconvolution2d_nhwc_f32(
padding_top, padding_right, padding_bottom, padding_left,
kernel_height, kernel_width,
stride, stride,
dilation, dilation,
groups, group_input_channels, group_output_channels,
input_pixel_stride, output_pixel_stride,
kernel.data(), bias.data(),
-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(),
0 /* flags */,
&deconvolution_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to create FP32 Deconvolution operator");
return;
}
}
for (size_t i = 0; i < deconvolution_operators.size(); i++) {
status = xnn_setup_deconvolution2d_nhwc_f32(
deconvolution_operators[i],
batch_size, input_height, input_width,
0 /* height adjustment */, 0 /* width adjustment */,
input.data(), output.data() + i * output_elements,
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to setup QINT8 Deconvolution operator");
return;
}
}
size_t buffer_index = 0;
for (auto _ : state) {
state.PauseTiming();
benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
status = xnn_run_operator(deconvolution_operators[buffer_index], nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run FP32 Deconvolution operator");
return;
}
}
for (xnn_operator_t& deconvolution_op : deconvolution_operators) {
status = xnn_delete_operator(deconvolution_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete FP32 Deconvolution operator");
return;
}
deconvolution_op = nullptr;
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 *
batch_size * input_width * input_width *
groups * group_input_channels * group_output_channels *
kernel_height * kernel_width,
benchmark::Counter::kIsRate);
}
#ifdef BENCHMARK_TENSORFLOW_LITE
void tflite_deconvolution_f32(benchmark::State& state, const char* net) {
const size_t batch_size = state.range(0);
const size_t input_height = state.range(1);
const size_t input_width = state.range(2);
const size_t kernel_height = state.range(3);
const size_t kernel_width = state.range(4);
const size_t padding = state.range(5);
const size_t adjustment = state.range(6);
const size_t stride = state.range(7);
const size_t dilation = state.range(8);
const size_t groups = state.range(9);
const size_t input_channels = state.range(10);
const size_t output_channels = state.range(11);
if (groups != 1) {
state.SkipWithError("grouped deconvolution is not supported");
return;
}
if (dilation != 1) {
state.SkipWithError("dilated deconvolution is not supported");
return;
}
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng);
tflite::Padding tf_padding = tflite::Padding_VALID;
if (padding == (kernel_width - 1) && padding == (kernel_height - 1)) {
tf_padding = tflite::Padding_SAME;
} else if (padding == 0) {
tf_padding = tflite::Padding_VALID;
} else {
state.SkipWithError("unsupported padding");
return;
}
const size_t output_height = std::max(stride * (input_height - 1) + adjustment + kernel_height, padding) - padding;
const size_t output_width = std::max(stride * (input_width - 1) + adjustment + kernel_width, padding) - padding;
std::vector<float> kernel(output_channels * kernel_height * kernel_width * input_channels);
std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
flatbuffers::FlatBufferBuilder builder;
flatbuffers::Offset<tflite::OperatorCode> operator_code =
CreateOperatorCode(builder, tflite::BuiltinOperator_TRANSPOSE_CONV, 0);
flatbuffers::Offset<tflite::TransposeConvOptions> transpose_conv_options = CreateTransposeConvOptions(
builder,
tf_padding,
static_cast<int32_t>(stride), static_cast<int32_t>(stride));
const int32_t input_shape[4] = {
static_cast<int32_t>(batch_size),
static_cast<int32_t>(input_height),
static_cast<int32_t>(input_width),
static_cast<int32_t>(input_channels)
};
const int32_t output_shape[4] = {
static_cast<int32_t>(batch_size),
static_cast<int32_t>(output_height),
static_cast<int32_t>(output_width),
static_cast<int32_t>(output_channels)
};
const int32_t filter_shape[4] = {
static_cast<int32_t>(output_channels),
static_cast<int32_t>(kernel_height),
static_cast<int32_t>(kernel_width),
static_cast<int32_t>(input_channels)
};
const int32_t output_shape_shape[1] = { 4 };
flatbuffers::Offset<tflite::Buffer> buffers[3] = {
tflite::CreateBuffer(builder, builder.CreateVector({})),
tflite::CreateBuffer(builder, builder.CreateVector(
reinterpret_cast<const uint8_t*>(kernel.data()),
sizeof(float) * kernel.size())),
tflite::CreateBuffer(builder, builder.CreateVector(
reinterpret_cast<const uint8_t*>(output_shape),
sizeof(output_shape))),
};
flatbuffers::Offset<tflite::Tensor> tensors[4] = {
tflite::CreateTensor(builder,
builder.CreateVector<int32_t>(output_shape_shape, 1),
tflite::TensorType_INT32,
2 /* buffer id */,
builder.CreateString("output_shape")),
tflite::CreateTensor(builder,
builder.CreateVector<int32_t>(filter_shape, 4),
tflite::TensorType_FLOAT32,
1 /* buffer id */,
builder.CreateString("filter")),
tflite::CreateTensor(builder,
builder.CreateVector<int32_t>(input_shape, 4),
tflite::TensorType_FLOAT32,
0 /* buffer id */,
builder.CreateString("input")),
tflite::CreateTensor(builder,
builder.CreateVector<int32_t>(output_shape, 4),
tflite::TensorType_FLOAT32,
0 /* buffer id */,
builder.CreateString("output")),
};
const int32_t op_inputs[3] = { 0, 1, 2 };
const int32_t op_outputs[1] = { 3 };
flatbuffers::Offset<tflite::Operator> op = CreateOperator(
builder,
0 /* opcode_index */,
builder.CreateVector<int32_t>(op_inputs, 3),
builder.CreateVector<int32_t>(op_outputs, 1),
tflite::BuiltinOptions_TransposeConvOptions,
transpose_conv_options.Union());
const int32_t graph_inputs[1] = { 2 };
const int32_t graph_outputs[1] = { 3 };
flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph(
builder,
builder.CreateVector(tensors, 4),
builder.CreateVector<int32_t>(graph_inputs, 1),
builder.CreateVector<int32_t>(graph_outputs, 1),
builder.CreateVector(&op, 1),
builder.CreateString("TransposeConv subgraph"));
flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("TransposeConv model");
flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
TFLITE_SCHEMA_VERSION,
builder.CreateVector(&operator_code, 1),
builder.CreateVector(&subgraph, 1),
description,
builder.CreateVector(buffers, 3));
builder.Finish(model_buffer);
const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
tflite::ops::builtin::BuiltinOpResolver resolver;
tflite::InterpreterBuilder interpreterBuilder(model, resolver);
std::unique_ptr<tflite::Interpreter> interpreter;
if (interpreterBuilder(&interpreter) != kTfLiteOk) {
state.SkipWithError("failed to create TFLite interpreter");
return;
}
if (interpreter == nullptr) {
state.SkipWithError("TFLite interpreter is null");
return;
}
interpreter->SetNumThreads(1);
if (interpreter->AllocateTensors() != kTfLiteOk) {
state.SkipWithError("failed to allocate tensors");
return;
}
std::generate(
interpreter->typed_tensor<float>(2),
interpreter->typed_tensor<float>(2) + batch_size * input_channels * input_height * input_width,
std::ref(f32rng));
for (auto _ : state) {
state.PauseTiming();
benchmark::utils::WipeCache();
benchmark::utils::PrefetchToL1(
interpreter->typed_tensor<float>(2),
batch_size * input_channels * input_height * input_width * sizeof(float));
state.ResumeTiming();
if (interpreter->Invoke() != kTfLiteOk) {
state.SkipWithError("failed to invoke TFLite interpreter");
return;
}
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 *
batch_size * input_width * input_width *
input_channels * output_channels *
kernel_height * kernel_width,
benchmark::Counter::kIsRate);
interpreter.reset();
}
#endif // BENCHMARK_TENSORFLOW_LITE
// FCN-32 model (PASCAL VOC version).
// We assume CIF image (352x288) on model input / output.
static void FCN32(benchmark::internal::Benchmark* b) {
b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"});
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 9, 11, 64, 64, 0, 0, 32, 1, 1, 21, 21});
}
// FCN-16 model (PASCAL VOC version).
// We assume CIF image (352x288) on model input / output.
static void FCN16(benchmark::internal::Benchmark* b) {
b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"});
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 9, 11, 4, 4, 0, 0, 2, 1, 1, 21, 21});
b->Args({1, 18, 22, 32, 32, 0, 0, 16, 1, 1, 21, 21});
}
// FCN-8 model (PASCAL VOC version).
// We assume CIF image (352x288) on model input / output.
static void FCN8(benchmark::internal::Benchmark* b) {
b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"});
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 9, 11, 4, 4, 0, 0, 2, 1, 1, 21, 21});
b->Args({1, 18, 22, 4, 4, 0, 0, 2, 1, 1, 21, 21});
b->Args({1, 36, 44, 16, 16, 0, 0, 8, 1, 1, 21, 21});
}
static void ENet(benchmark::internal::Benchmark* b) {
b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"});
/********************* Bottleneck 4.0 ********************/
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 64, 64, 3, 3, 2, 1, 2, 1, 1, 32, 32});
/********************* Bottleneck 5.0 ********************/
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 128, 128, 3, 3, 2, 1, 2, 1, 1, 16, 16});
/***************** Final Full Convolution ****************/
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 256, 256, 2, 2, 0, 0, 2, 1, 1, 16, 12});
}
static void ESPNet(benchmark::internal::Benchmark* b) {
b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"});
/* N H W KH KW P A S D G GCin GCout */
b->Args({1, 64, 128, 2, 2, 0, 0, 2, 1, 1, 20, 20});
b->Args({1, 128, 256, 2, 2, 0, 0, 2, 1, 1, 20, 20});
b->Args({1, 256, 512, 2, 2, 0, 0, 2, 1, 1, 20, 20});
}
BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, fcn32, "FCN-32")->Apply(FCN32)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, fcn16, "FCN-16")->Apply(FCN16)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, fcn8, "FCN-8")->Apply(FCN8)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, enet, "ENet")->Apply(ENet)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, espnet, "ESPNet")->Apply(ESPNet)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_q8, fcn32, "FCN-32")->Apply(FCN32)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_q8, fcn16, "FCN-16")->Apply(FCN16)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_q8, fcn8, "FCN-8")->Apply(FCN8)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_q8, enet, "ENet")->Apply(ENet)->UseRealTime();
BENCHMARK_CAPTURE(xnnpack_deconvolution_q8, espnet, "ESPNet")->Apply(ESPNet)->UseRealTime();
#ifdef BENCHMARK_TENSORFLOW_LITE
BENCHMARK_CAPTURE(tflite_deconvolution_f32, fcn32, "FCN-32")->Apply(FCN32)->UseRealTime();
BENCHMARK_CAPTURE(tflite_deconvolution_f32, fcn16, "FCN-16")->Apply(FCN16)->UseRealTime();
BENCHMARK_CAPTURE(tflite_deconvolution_f32, fcn8, "FCN-8")->Apply(FCN8)->UseRealTime();
BENCHMARK_CAPTURE(tflite_deconvolution_f32, enet, "ENet")->Apply(ENet)->UseRealTime();
BENCHMARK_CAPTURE(tflite_deconvolution_f32, espnet, "ESPNet")->Apply(ESPNet)->UseRealTime();
#endif // BENCHMARK_TENSORFLOW_LITE
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif