| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #include <algorithm> |
| #include <cfloat> |
| #include <cmath> |
| #include <functional> |
| #include <random> |
| #include <vector> |
| |
| #include <cpuinfo.h> |
| |
| #include <benchmark/benchmark.h> |
| #include "bench/dwconv.h" |
| #include "bench/utils.h" |
| #include <xnnpack/AlignedAllocator.h> |
| #include <xnnpack/common.h> |
| #include <xnnpack/dwconv.h> |
| #include <xnnpack/indirection.h> |
| #include <xnnpack/operator.h> |
| #include <xnnpack/pack.h> |
| #include <xnnpack/params-init.h> |
| #include <xnnpack/params.h> |
| |
| |
| static void DWConvCHWBenchmark(benchmark::State& state, |
| xnn_f32_dwconv_spchw_ukernel_function dwconv, |
| uint32_t it, uint32_t ot, uint32_t kh, uint32_t kw, uint32_t pw, uint32_t s) |
| { |
| if (!cpuinfo_initialize()) { |
| state.SkipWithError("cpuinfo initialization failed"); |
| return; |
| } |
| |
| const size_t input_height = state.range(0); |
| const size_t input_width = state.range(1); |
| const size_t kernel_height = state.range(2); |
| const size_t kernel_width = state.range(3); |
| const size_t padding_height = state.range(4); |
| const size_t padding_width = state.range(5); |
| const size_t subsampling = state.range(6); |
| const size_t dilation = state.range(7); |
| const size_t channels = state.range(8); |
| |
| if (kernel_height != kh) { |
| state.SkipWithError("kernel height mismatch"); |
| return; |
| } |
| |
| if (kernel_width != kw) { |
| state.SkipWithError("kernel width mismatch"); |
| return; |
| } |
| |
| if (subsampling != s) { |
| state.SkipWithError("subsampling mismatch"); |
| return; |
| } |
| |
| if (padding_width % 2 != 0 || padding_width / 2 != pw) { |
| state.SkipWithError("padding width mismatch"); |
| return; |
| } |
| |
| if (dilation != 1) { |
| state.SkipWithError("unsupported dilation"); |
| return; |
| } |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| const size_t inputSize = (input_height + padding_height) * input_width; |
| const size_t kernel_size = kernel_height * kernel_width; |
| const size_t output_size = output_height * output_width; |
| |
| std::vector<float> input(inputSize * channels + 2 * it); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> bias(channels); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| std::vector<float> kernel(channels * kernel_size); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| |
| const size_t w_elements = (kernel_size + 1) * channels; |
| const size_t o_elements = output_size * channels; |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(float) * (w_elements + o_elements)); |
| |
| std::vector<float, AlignedAllocator<float, 32>> packed_weights(w_elements * num_buffers); |
| std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
| for (size_t c = 0; c < channels; c++) { |
| packed_weights[c * kernel_size + c] = bias[c]; |
| for (size_t i = 0; i < kernel_size; i++) { |
| packed_weights[c * kernel_size + c + 1 + i] = kernel[c * kernel_size + i]; |
| } |
| } |
| for (size_t n = 1; n < num_buffers; n++) { |
| std::copy(packed_weights.cbegin(), packed_weights.cbegin() + w_elements, packed_weights.begin() + n * w_elements); |
| } |
| |
| std::vector<float> output(o_elements * num_buffers); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_f32_spchw_params spchw_params = |
| xnn_init_f32_spchw_params(input_width, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity()); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| for (uint32_t channel = 0; channel < channels; channel++) { |
| dwconv( |
| output_height, input_width, |
| input.data() + channel * inputSize, |
| packed_weights.data() + channel * (kernel_size + 1) + buffer_index * w_elements, |
| output.data() + channel * output_size + buffer_index * o_elements, |
| it * sizeof(float), ot * sizeof(float), |
| input_width * sizeof(float), output_width * sizeof(float), |
| &spchw_params); |
| } |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * output_size * channels * kernel_size, |
| benchmark::Counter::kIsRate); |
| |
| state.counters["BYTES"] = benchmark::Counter( |
| uint64_t(state.iterations()) * (output_size + inputSize + kernel_size + 1 /* bias */) * channels * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| |
| static void DWConvHWoTCTBenchmark(benchmark::State& state, |
| xnn_f32_dwconv_spchw_ukernel_function dwconv, |
| uint32_t it, uint32_t ot, uint32_t kh, uint32_t kw, uint32_t pw, uint32_t s) |
| { |
| if (!cpuinfo_initialize()) { |
| state.SkipWithError("cpuinfo initialization failed"); |
| return; |
| } |
| |
| const size_t input_height = state.range(0); |
| const size_t input_width = state.range(1); |
| const size_t kernel_height = state.range(2); |
| const size_t kernel_width = state.range(3); |
| const size_t padding_height = state.range(4); |
| const size_t padding_width = state.range(5); |
| const size_t subsampling = state.range(6); |
| const size_t dilation = state.range(7); |
| const size_t channels = state.range(8); |
| |
| if (kernel_height != kh) { |
| state.SkipWithError("kernel height mismatch"); |
| return; |
| } |
| |
| if (kernel_width != kw) { |
| state.SkipWithError("kernel width mismatch"); |
| return; |
| } |
| |
| if (subsampling != s) { |
| state.SkipWithError("subsampling mismatch"); |
| return; |
| } |
| |
| if (padding_width % 2 != 0 || padding_width / 2 != pw) { |
| state.SkipWithError("padding width mismatch"); |
| return; |
| } |
| |
| if (dilation != 1) { |
| state.SkipWithError("unsupported dilation"); |
| return; |
| } |
| |
| std::random_device random_device; |
| auto rng = std::mt19937(random_device()); |
| auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), rng); |
| |
| const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| const size_t output_height = (input_height + padding_height - effective_kernel_height) / subsampling + 1; |
| const size_t output_width = (input_width + padding_width - effective_kernel_width) / subsampling + 1; |
| |
| const size_t inputSize = (input_height + padding_height) * input_width; |
| const size_t kernel_size = kernel_height * kernel_width; |
| const size_t output_size = output_height * output_width; |
| |
| std::vector<float> input(input_height * benchmark::utils::RoundUp<size_t>(input_width, it) * channels); |
| std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| std::vector<float> bias(channels); |
| std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| std::vector<float> kernel(channels * kernel_size); |
| std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| |
| const size_t w_elements = (kernel_size + 1) * channels; |
| const size_t o_elements = output_height * benchmark::utils::RoundUp<size_t>(output_width, ot) * channels; |
| const size_t num_buffers = 1 + |
| benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
| sizeof(float) * (w_elements + o_elements)); |
| |
| std::vector<float, AlignedAllocator<float, 32>> packed_weights(w_elements * num_buffers); |
| std::fill(packed_weights.begin(), packed_weights.end(), 0.0f); |
| for (size_t c = 0; c < channels; c++) { |
| packed_weights[c * kernel_size + c] = bias[c]; |
| for (size_t i = 0; i < kernel_size; i++) { |
| packed_weights[c * kernel_size + c + 1 + i] = kernel[c * kernel_size + i]; |
| } |
| } |
| for (size_t n = 1; n < num_buffers; n++) { |
| std::copy(packed_weights.cbegin(), packed_weights.cbegin() + w_elements, packed_weights.begin() + n * w_elements); |
| } |
| |
| std::vector<float> output(o_elements * num_buffers); |
| std::fill(output.begin(), output.end(), std::nanf("")); |
| |
| xnn_f32_spchw_params spchw_params = |
| xnn_init_f32_spchw_params(input_width, -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity()); |
| |
| size_t buffer_index = 0; |
| for (auto _ : state) { |
| state.PauseTiming(); |
| benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float)); |
| buffer_index = (buffer_index + 1) % num_buffers; |
| state.ResumeTiming(); |
| |
| for (uint32_t channel = 0; channel < channels; channel++) { |
| dwconv( |
| output_height, input_width, |
| input.data() + channel * it, |
| packed_weights.data() + channel * (kernel_size + 1) + buffer_index * w_elements, |
| output.data() + channel * ot + buffer_index * o_elements, |
| it * channels * sizeof(float), ot * channels * sizeof(float), |
| benchmark::utils::RoundUp<size_t>(input_width, it) * channels * sizeof(float), |
| benchmark::utils::RoundUp<size_t>(output_width, ot) * channels * sizeof(float), |
| &spchw_params); |
| } |
| } |
| |
| state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency(); |
| state.counters["FLOPS"] = benchmark::Counter( |
| uint64_t(state.iterations()) * 2 * output_size * channels * kernel_size, |
| benchmark::Counter::kIsRate); |
| |
| state.counters["BYTES"] = benchmark::Counter( |
| uint64_t(state.iterations()) * (output_size + inputSize + kernel_size + 1 /* bias */) * channels * sizeof(float), |
| benchmark::Counter::kIsRate); |
| } |
| |
| #if XNN_ARCH_ARM64 |
| static void CHW_3x3p1__neonfma(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3p1__neonfma, 4, 4, 3, 3, 1, 1); |
| } |
| |
| static void CHW_5x5p2__neonfma(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5p2__neonfma, 4, 4, 5, 5, 2, 1); |
| } |
| |
| static void CHW_3x3s2p1__neonfma(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3s2p1__neonfma, 4, 4, 3, 3, 1, 2); |
| } |
| |
| static void CHW_5x5s2p2__neonfma(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5s2p2__neonfma, 4, 4, 5, 5, 2, 2); |
| } |
| |
| static void HWo4C4_3x3p1__neonfma(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3p1__neonfma, 4, 4, 3, 3, 1, 1); |
| } |
| |
| static void HWo4C4_5x5p2__neonfma(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5p2__neonfma, 4, 4, 5, 5, 2, 1); |
| } |
| |
| static void HWo4C4_3x3s2p1__neonfma(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3s2p1__neonfma, 4, 4, 3, 3, 1, 2); |
| } |
| |
| static void HWo4C4_5x5s2p2__neonfma(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5s2p2__neonfma, 4, 4, 5, 5, 2, 2); |
| } |
| |
| BENCHMARK_DWCONV(CHW_3x3p1__neonfma) |
| BENCHMARK_DWCONV(CHW_5x5p2__neonfma) |
| BENCHMARK_DWCONV(CHW_3x3s2p1__neonfma) |
| BENCHMARK_DWCONV(CHW_5x5s2p2__neonfma) |
| BENCHMARK_DWCONV(HWo4C4_3x3p1__neonfma) |
| BENCHMARK_DWCONV(HWo4C4_5x5p2__neonfma) |
| BENCHMARK_DWCONV(HWo4C4_3x3s2p1__neonfma) |
| BENCHMARK_DWCONV(HWo4C4_5x5s2p2__neonfma) |
| #endif // XNN_ARCH_ARM64 |
| |
| |
| #if XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| static void CHW_3x3p1__sse(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3p1__sse, 4, 4, 3, 3, 1, 1); |
| } |
| |
| static void CHW_3x3s2p1__sse(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3s2p1__sse, 4, 4, 3, 3, 1, 2); |
| } |
| |
| static void HWo4C4_3x3p1__sse(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3p1__sse, 4, 4, 3, 3, 1, 1); |
| } |
| |
| static void HWo4C4_3x3s2p1__sse(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3s2p1__sse, 4, 4, 3, 3, 1, 2); |
| } |
| |
| BENCHMARK_DWCONV(CHW_3x3p1__sse) |
| BENCHMARK_DWCONV(CHW_3x3s2p1__sse) |
| BENCHMARK_DWCONV(HWo4C4_3x3p1__sse) |
| BENCHMARK_DWCONV(HWo4C4_3x3s2p1__sse) |
| #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 |
| |
| static void CHW_3x3p1__scalar(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3p1__scalar, 1, 1, 3, 3, 1, 1); |
| } |
| |
| static void CHW_5x5p2__scalar(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5p2__scalar, 1, 1, 5, 5, 2, 1); |
| } |
| |
| static void CHW_3x3s2p1__scalar(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3s2p1__scalar, 1, 1, 3, 3, 1, 2); |
| } |
| |
| static void CHW_5x5s2p2__scalar(benchmark::State& state, const char* net) { |
| DWConvCHWBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5s2p2__scalar, 1, 1, 5, 5, 2, 2); |
| } |
| |
| static void HWC_3x3p1__scalar(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3p1__scalar, 1, 1, 3, 3, 1, 1); |
| } |
| |
| static void HWC_5x5p2__scalar(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5p2__scalar, 1, 1, 5, 5, 2, 1); |
| } |
| |
| static void HWC_3x3s2p1__scalar(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_3x3s2p1__scalar, 1, 1, 3, 3, 1, 2); |
| } |
| |
| static void HWC_5x5s2p2__scalar(benchmark::State& state, const char* net) { |
| DWConvHWoTCTBenchmark(state, xnn_f32_dwconv_spchw_ukernel_5x5s2p2__scalar, 1, 1, 5, 5, 2, 2); |
| } |
| |
| |
| BENCHMARK_DWCONV(CHW_3x3p1__scalar) |
| BENCHMARK_DWCONV(CHW_5x5p2__scalar) |
| BENCHMARK_DWCONV(CHW_3x3s2p1__scalar) |
| BENCHMARK_DWCONV(CHW_5x5s2p2__scalar) |
| BENCHMARK_DWCONV(HWC_3x3p1__scalar) |
| BENCHMARK_DWCONV(HWC_5x5p2__scalar) |
| BENCHMARK_DWCONV(HWC_3x3s2p1__scalar) |
| BENCHMARK_DWCONV(HWC_5x5s2p2__scalar) |
| |
| #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| BENCHMARK_MAIN(); |
| #endif |