blob: 6835f87bf6ca1c5e01c593e46b75e9f54df0bc0b [file] [log] [blame]
#!/usr/bin/env python
# Copyright 2019 Google LLC
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import bisect
import codecs
import os
import sys
import yaml
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from primes import next_prime
import xngen
parser = argparse.ArgumentParser(description='XNNPACK generator')
parser.add_argument("-s", "--spec", metavar="FILE", required=True,
help="Spec (YAML) file")
parser.add_argument("-o", "--output", metavar="FILE", required=True,
help='Output (C++ source) file')
parser.set_defaults(defines=list())
def indent(text):
return "\n".join(map(lambda t: " " + t if t else t, text.splitlines()))
def remove_duplicate_newlines(text):
filtered_lines = list()
last_newline = False
for line in text.splitlines():
is_newline = len(line.strip()) == 0
if not is_newline or not last_newline:
filtered_lines.append(line)
last_newline = is_newline
return "\n".join(filtered_lines)
ARCH_TO_MACRO_MAP = {
"aarch32": "XNN_ARCH_ARM",
"aarch64": "XNN_ARCH_ARM64",
"x86": "XNN_ARCH_X86",
"x86-64": "XNN_ARCH_X86_64",
}
ISA_TO_ARCH_MAP = {
"neon": ["aarch32", "aarch64"],
"neonfma": ["aarch32", "aarch64"],
"neonfp16arith": ["aarch32", "aarch64"],
"sse": ["x86", "x86-64"],
"sse2": ["x86", "x86-64"],
"avx": ["x86", "x86-64"],
"avx512f": ["x86", "x86-64"],
"psimd": [],
}
ISA_TO_CHECK_MAP = {
"neon": "TEST_REQUIRES_ARM_NEON",
"neonfma": "TEST_REQUIRES_ARM_NEON_FMA",
"neonfp16arith": "TEST_REQUIRES_ARM_NEON_FP16_ARITH",
"sse": "TEST_REQUIRES_X86_SSE",
"sse2": "TEST_REQUIRES_X86_SSE2",
"avx": "TEST_REQUIRES_X86_AVX",
"avx512f": "TEST_REQUIRES_X86_AVX512F",
"psimd": "TEST_REQUIRES_PSIMD",
}
def split_ukernel_name(name):
common_name, target_name = name.split("__", 1)
common_parts = common_name.split("_")
param_spec = common_parts[-1]
mr, nr = map(int, param_spec.split("x"))
arch = list()
isa = None
for target_part in target_name.split("_"):
if target_part in ARCH_TO_MACRO_MAP:
arch = [target_part]
elif target_part in ISA_TO_ARCH_MAP:
isa = target_part
if isa and not arch:
arch = ISA_TO_ARCH_MAP[isa]
return mr, nr, arch, isa
TEST_TEMPLATE = """\
TEST(${TEST_NAME}, k_eq_${KBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(${NR})
.k(${KBLOCK})
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
$if NR > 1:
TEST(${TEST_NAME}, k_eq_${KBLOCK}_subtile) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = 1; n <= ${NR}; n++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(${KBLOCK})
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
$if IS_PIPELINED:
TEST(${TEST_NAME}, k_eq_${KBLOCK * 2}) {
$if ISA_CHECK:
${ISA_CHECK};
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(${NR})
.k(${KBLOCK * 2})
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
$if NR > 1:
TEST(${TEST_NAME}, k_eq_${KBLOCK * 2}_subtile) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = 1; n <= ${NR}; n++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(${KBLOCK * 2})
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
$if KBLOCK > 1:
TEST(${TEST_NAME}, k_lt_${ADJKBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t k = 1; k < ${ADJKBLOCK}; k++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(${NR})
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
$if NR > 1:
TEST(${TEST_NAME}, k_lt_${ADJKBLOCK}_subtile) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t k = 1; k < ${ADJKBLOCK}; k++) {
for (uint32_t n = 1; n <= ${NR}; n++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, k_gt_${ADJKBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t k = ${ADJKBLOCK + 1}; k < ${KBLOCK * 10 if KBLOCK == 1 else KBLOCK * 2}; k++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(${NR})
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
$if NR > 1:
TEST(${TEST_NAME}, k_gt_${KBLOCK}_subtile) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t k = ${ADJKBLOCK + 1}; k < ${10 if KBLOCK == 1 else KBLOCK * 2}; k++) {
for (uint32_t n = 1; n <= ${NR}; n++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
$if KBLOCK > 1:
TEST(${TEST_NAME}, k_div_${KBLOCK}) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t k = ${ADJKBLOCK + KBLOCK}; k <= ${KBLOCK * 10}; k += ${KBLOCK}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(${NR})
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
$if NR > 1:
TEST(${TEST_NAME}, k_div_${KBLOCK}_subtile) {
$if ISA_CHECK:
${ISA_CHECK};
for (size_t k = ${ADJKBLOCK + KBLOCK}; k <= ${KBLOCK * 10}; k += ${KBLOCK}) {
for (uint32_t n = 1; n <= ${NR}; n++) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, n_gt_${NR}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = ${NR + 1}; n < ${max(10, NR * 2)}; n++) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
$if NR > 1:
TEST(${TEST_NAME}, n_div_${NR}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = ${2 * NR}; n <= ${3 * NR}; n += ${NR}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR})
.n(n)
.k(k)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, m_lt_${MR}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t m = ${1}; m < ${MR}; m++) {
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(m)
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
}
TEST(${TEST_NAME}, m_div_${MR}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t m = ${MR * 2}; m <= ${MR * 3}; m += ${MR}) {
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(m)
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
}
TEST(${TEST_NAME}, m_gt_${MR}) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t m = ${MR + 1}; m < ${MR * 2}; m++) {
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(m)
.n(n)
.k(k)
.sparsity(0.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
}
TEST(${TEST_NAME}, qmin) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR * 2})
.n(n)
.k(k)
.sparsity(0.0f)
.qmin(128)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, qmax) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR * 2})
.n(n)
.k(k)
.sparsity(0.0f)
.qmax(128)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, half_sparse) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR * 2})
.n(n)
.k(k)
.sparsity(0.5f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
TEST(${TEST_NAME}, zero_weights) {
$if ISA_CHECK:
${ISA_CHECK};
for (uint32_t n = 1; n < ${max(10, NR * 5)}; n += ${NR + 1}) {
for (size_t k = 1; k <= ${KBLOCK * 5}; k += ${KBLOCK + 1}) {
SpMMMicrokernelTester()
.mr(${MR})
.nr(${NR})
.m(${MR * 2})
.n(n)
.k(k)
.sparsity(1.0f)
.Test(${", ".join(TEST_ARGS)});
}
}
}
"""
def generate_test_cases(ukernel, mr, nr, k_block, is_pipelined, isa):
"""Generates all tests cases for a GEMM micro-kernel.
Args:
ukernel: C name of the micro-kernel function.
mr: MR parameter of the GEMM micro-kernel.
nr: NR parameter of the GEMM micro-kernel.
k_block: Number of K values processed per one iteration of the main loop of
the micro-kernel.
is_pipelined: Indicates if the micro-kernel is implemented with software
pipelining. Additional test cases are generated for software
pipelined micro-kernels to separately test prologue + epiloque
of the pipelined loop and iteration of the pipelined loop.
isa: instruction set required to run the micro-kernel. Generated unit test
will skip execution if the host processor doesn't support this ISA.
Returns:
Code for the test case.
"""
_, test_name = ukernel.split("_", 1)
_, datatype, ukernel_type, _ = ukernel.split("_", 3)
test_args = [ukernel]
if not isa or isa == "psimd":
test_args.append("SpMMMicrokernelTester::Variant::Scalar")
return xngen.preprocess(TEST_TEMPLATE, {
"TEST_NAME": test_name.upper().replace("UKERNEL_", ""),
"TEST_ARGS": test_args,
"UKERNEL_TYPE": ukernel_type.upper(),
"DATATYPE": datatype,
"MR": mr,
"NR": nr,
"KBLOCK": k_block,
"ADJKBLOCK": 2 * k_block if is_pipelined else k_block,
"IS_PIPELINED": is_pipelined,
"ISA_CHECK": ISA_TO_CHECK_MAP.get(isa, ""),
"next_prime": next_prime,
})
def main(args):
options = parser.parse_args(args)
with codecs.open(options.spec, "r", encoding="utf-8") as spec_file:
spec_yaml = yaml.safe_load(spec_file)
if not isinstance(spec_yaml, list):
raise ValueError("expected a list of micro-kernels in the spec")
tests = """\
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
//
// Auto-generated file. Do not edit!
// Specification: {specification}
// Generator: {generator}
#include <gtest/gtest.h>
#include <xnnpack/common.h>
#include <xnnpack/isa-checks.h>
#include <xnnpack/spmm.h>
#include "spmm-microkernel-tester.h"
""".format(specification=options.spec, generator=sys.argv[0])
for ukernel_spec in spec_yaml:
name = ukernel_spec["name"]
k_block = int(ukernel_spec["k-block"])
pipelined = bool(ukernel_spec.get("pipelined", False))
mr, nr, arch, isa = split_ukernel_name(name)
# specification can override architecture
arch = ukernel_spec.get("arch", arch)
test_case = generate_test_cases(name, mr, nr, k_block, pipelined, isa)
test_case = remove_duplicate_newlines(test_case)
tests += "\n\n"
if arch:
guard_macro = " || ".join(map(ARCH_TO_MACRO_MAP.get, arch))
tests += "#if %s\n" % guard_macro
tests += indent(test_case) + "\n"
tests += "#endif // %s\n" % guard_macro
elif isa == "psimd":
guard_macro = "!XNN_ARCH_ASMJS && !XNN_ARCH_WASM"
tests += "#if %s\n" % guard_macro
tests += indent(test_case) + "\n"
tests += "#endif // %s\n" % guard_macro
else:
tests += test_case
with codecs.open(options.output, "w", encoding="utf-8") as output_file:
output_file.write(tests)
if __name__ == "__main__":
main(sys.argv[1:])