| // Copyright (c) Facebook, Inc. and its affiliates. |
| // All rights reserved. |
| // |
| // Copyright 2019 Google LLC |
| // |
| // This source code is licensed under the BSD-style license found in the |
| // LICENSE file in the root directory of this source tree. |
| |
| #pragma once |
| |
| #include <stdbool.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <pthreadpool.h> |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /// The number of bytes XNNPACK may read beyond array bounds. |
| /// The caller must allocate at this this many extra bytes after the tensor data passed to XNNPACK. |
| /// |
| /// Note: XNNPACK reads, but never writes beyond array bounds. |
| #define XNN_EXTRA_BYTES 16 |
| |
| /// Maximum number of dimensions in tensor shape. |
| #define XNN_MAX_TENSOR_DIMS 6 |
| |
| /// The convolution operator represents a depthwise convolution, and use HWGo layout for filters. |
| #define XNN_FLAG_DEPTHWISE_CONVOLUTION 0x00000001 |
| |
| /// Assume transposed weights in a fully connected operator. |
| #define XNN_FLAG_TRANSPOSE_WEIGHTS 0x00000001 |
| |
| /// The operator assumes NHWC layout for the input, regardless of the output layout. |
| #define XNN_FLAG_INPUT_NHWC 0x00000002 |
| |
| /// Match "SAME" padding in TensorFlow. Exact padding values are computed dynamically depending on input size. |
| #define XNN_FLAG_TENSORFLOW_SAME_PADDING 0x00000004 |
| |
| /// Implicitly flatten and reshape input of a Fully Connected operator into a 2D |
| /// tensor. |
| #define XNN_FLAG_TENSORFLOW_RESHAPE_2D 0x00000004 |
| |
| /// Match behaviour of TensorFlow 1.x. |
| #define XNN_FLAG_TENSORFLOW_LEGACY_MODE 0x00000004 |
| |
| /// Align corners of input and output images in resize operations. |
| #define XNN_FLAG_ALIGN_CORNERS 0x00000008 |
| |
| /// Status code for any XNNPACK function call. |
| enum xnn_status { |
| /// The call succeeded, and all output arguments now contain valid data. |
| xnn_status_success = 0, |
| xnn_status_uninitialized = 1, |
| xnn_status_invalid_parameter = 2, |
| xnn_status_invalid_state = 3, |
| xnn_status_unsupported_parameter = 4, |
| xnn_status_unsupported_hardware = 5, |
| xnn_status_out_of_memory = 6, |
| }; |
| |
| struct xnn_allocator { |
| /// User-specified pointer that will be passed as-is to all functions in this structure. |
| void* context; |
| /// Pointer to a function to be called for general memory allocation. |
| /// |
| /// @param context - The user-specified pointer from xnn_allocator structure. |
| /// @param size - The size of the memory block to allocate, in bytes. |
| /// |
| /// @returns Pointer to the allocated memory block of at least @ref size bytes. |
| /// If allocation fails, the function must return NULL. |
| void* (*allocate)(void* context, size_t size); |
| /// Pointer to a function to be called for general memory re-allocation, i.e. to increase or shrink a previously |
| /// allocated memory block. The content of the old memory block is copied to the new memory block. |
| /// |
| /// @param context - The user-specified pointer from xnn_allocator structure. |
| /// @param pointer - Pointer to a memory block allocated by @ref allocate or @ref reallocate functions. Can be NULL. |
| /// If the pointer is NULL, the @ref reallocate call is equivalent to an @ref allocate call. |
| /// @param size - The new size of the memory block to allocate, in bytes. |
| /// |
| /// @returns Pointer to the newly allocated memory block of at least @ref size bytes with the content of the previous |
| /// memory block. |
| /// If allocation fails, the function must return NULL, but must not release the previous memory block. |
| void* (*reallocate)(void* context, void* pointer, size_t size); |
| /// Pointer to a function to be called for general memory de-allocation. |
| /// |
| /// @param context - The user-specified pointer from xnn_allocator structure. |
| /// @param pointer - Pointer to a memory block allocated by @ref allocate or @ref reallocate functions. Can be NULL. |
| /// If the pointer is NULL, the @ref deallocate call is a no-op. |
| void (*deallocate)(void* context, void* pointer); |
| /// Pointer to a function to be called for aligned memory allocation. |
| /// |
| /// @param context - The user-specified pointer from xnn_allocator structure. |
| /// @param alignment - The alignment of the memory block to allocate, in bytes. Alignment is always a power-of-2. |
| /// @param size - The size of the memory block to allocate, in bytes. |
| /// |
| /// @returns Pointer to the allocated memory block of at least @ref size bytes. |
| /// If allocation fails, the function must return NULL. |
| void* (*aligned_allocate)(void* context, size_t alignment, size_t size); |
| /// Pointer to a function to be called for aligned memory de-allocation. |
| /// |
| /// @param context - The user-specified pointer from xnn_allocator structure. |
| /// @param pointer - Pointer to a memory block allocated by @ref aligned_allocate function. Can be NULL. |
| /// If the pointer is NULL, the @ref aligned_deallocate call is a no-op. |
| void (*aligned_deallocate)(void* context, void* pointer); |
| }; |
| |
| /// Initialize XNNPACK library. |
| /// |
| /// XNNPACK must be successfully initialized before use. |
| /// During initialization, XNNPACK populates internal structures depending on host processor. It can be time-consuming. |
| /// |
| /// @param[in] allocator - structure with function pointers to be use for memory allocation and de-allocation. |
| /// If this argument is NULL, system-provided memory management functions (e.g. malloc/free) |
| /// will be used. |
| /// |
| /// @retval xnn_status_success - XNNPACK is succesfully initialized and ready to use. |
| /// @retval xnn_status_out_of_memory - initialization failed due to out-of-memory condition. |
| /// @retval xnn_status_unsupported_hardware - initialization failed because the host processor does not satisfy the |
| /// minimum hardware requirements for XNNPACK. E.g. this may happen on x86 |
| /// processors without SSE2 extension, or on 32-bit ARM processors without |
| /// the NEON SIMD extension. |
| enum xnn_status xnn_initialize(const struct xnn_allocator* allocator); |
| |
| /// Deinitialize XNNPACK library. |
| /// |
| /// To avoid memory and resource leaks, users must call xnn_deinitialize once for each successful xnn_initialize call. |
| /// |
| /// @retval xnn_status_success - deinitialization call succeeded. |
| enum xnn_status xnn_deinitialize(void); |
| |
| /// Subgraph is an abstract representation of a neural network model. |
| /// Subgraph objects are used to define Values (tensors) and Nodes (operators) comprising the model. |
| typedef struct xnn_subgraph* xnn_subgraph_t; |
| |
| /// Create a empty Subgraph object. |
| /// |
| /// @param external_value_ids - number of Value IDs to reserve for communication with external graph representation. |
| /// The Subgraph object would avoid creating internal Value IDs in the |
| /// [0, reserved_value_ids-1] range. |
| /// @param flags - binary features of the subgraph. No supported flags are currently defined. |
| /// @param subgraph_out - pointer to the variable that will be initialized with a handle to the Subgraph object upon |
| /// successful return. |
| enum xnn_status xnn_create_subgraph( |
| uint32_t external_value_ids, |
| uint32_t flags, |
| xnn_subgraph_t* subgraph_out); |
| |
| /// Destroy a Subgraph object, as well as Values, and Nodes associated with the subgraph. |
| /// |
| /// @param subgraph - the Subgraph object to destroy. |
| enum xnn_status xnn_delete_subgraph( |
| xnn_subgraph_t subgraph); |
| |
| #define XNN_VALUE_FLAG_EXTERNAL_INPUT 0x00000001 |
| #define XNN_VALUE_FLAG_EXTERNAL_OUTPUT 0x00000002 |
| |
| #define XNN_INVALID_VALUE_ID UINT32_MAX |
| |
| /// Type of elements in a Value object. |
| enum xnn_datatype { |
| /// Invalid data type. Valid Values never have this datatype. |
| xnn_datatype_invalid = 0, |
| /// IEEE754 single-precision floating-point. |
| xnn_datatype_fp32 = 1, |
| /// IEEE754 half-precision floating-point. |
| xnn_datatype_fp16 = 2, |
| }; |
| |
| /// Define a tensor-type Value and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Value. |
| /// @param datatype - type of the tensor elements. |
| /// @param num_dims - number of dimensions in the shape. |
| /// @param dims - pointer to an array of @a num_dims shape dimensions. If num_dims is 0, this pointer can be NULL. |
| /// XNNPACK does not keep any pointers to this array after the function returns. |
| /// @param data - pointer to static data used for tensor initialization. If the tensor is not statically initialized, |
| /// this pointer must be is NULL. If non-NULL, the life-time of the static data must exceed the life-time |
| /// of the Subgraph object, and of any Runtime objects created from the Subgraph. |
| /// @param external_id - external ID for the Value. The ID must be within the range of reversed Value IDs specified on |
| /// the Subgraph creation. If the external ID is XNN_INVALID_VALUE_ID, an internal ID will be |
| /// created for the Value. |
| /// @param flags - binary features of the Value. Supported values are any combination of XNN_VALUE_FLAG_EXTERNAL_INPUT |
| /// and XNN_VALUE_FLAG_EXTERNAL_OUTPUT. |
| /// @param id_out - pointer to the variable that will be initialized with the Value ID upon successful return. If a |
| /// valid @a external_id was provided, the variable will be initialized with the @a external_id value. |
| enum xnn_status xnn_define_tensor_value( |
| xnn_subgraph_t subgraph, |
| enum xnn_datatype datatype, |
| size_t num_dims, |
| const size_t* dims, |
| const void* data, |
| uint32_t external_id, |
| uint32_t flags, |
| uint32_t* id_out); |
| |
| /// Define a 2D Convolution Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING |
| /// flag is specified. |
| /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param kernel_height - kernel (filter) height. |
| /// @param kernel_width - kernel (filter) width. |
| /// @param subsampling_height - height of subsampling region for convolution output (convolution height stride). |
| /// @param subsampling_width - width of subsampling region for convolution output (convolution width stride). |
| /// @param dilation_height - dilation of kernel elements along the height dimension. |
| /// @param dilation_width - dilation of kernel elements along the width dimension. |
| /// @param groups - number of convolution groups. |
| /// @param group_input_channels - number of input channels per group. |
| /// @param group_output_channels - number of output channels per group. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, IH, IW, groups * group_input_channels] dimensions |
| /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge a 4D tensor defined in the @a subgraph |
| /// with [groups * group_output_channels, kernel_height, kernel_width, group_input_channels] |
| /// dimensions. |
| /// @param bias_id - Value ID for the bias tensor. The bias tensor must be a 1D tensor defined in the @a subgraph with |
| /// [groups * group_output_channels] dimensions. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, OH, OW, groups * group_output_channels] dimensions. |
| /// @param flags - binary features of the 2D Convolution Node. The only currently supported values is |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING. |
| enum xnn_status xnn_define_convolution_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t filter_id, |
| uint32_t bias_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2D Deconvolution (Transposed Convolution) Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param padding_top - implicit padding above 2D output data. |
| /// @param padding_right - implicit padding to the right of 2D output data. |
| /// @param padding_bottom - implicit padding below 2D output data. |
| /// @param padding_left - implicit padding to the left of 2D output data. |
| /// @param adjustment_height - additional elements in the bottom of the 2D output data. |
| /// @param adjustment_width - additional elements to the right of the 2D output data. |
| /// @param kernel_height - kernel (filter) height. |
| /// @param kernel_width - kernel (filter) width. |
| /// @param upsampling_height - height of upsampling region for deconvolution input (deconvolution height stride). |
| /// @param upsampling_width - width of upsampling region for deconvolution input (deconvolution width stride). |
| /// @param dilation_height - dilation of kernel elements along the height dimension. |
| /// @param dilation_width - dilation of kernel elements along the width dimension. |
| /// @param groups - number of convolution groups. |
| /// @param group_input_channels - number of input channels per group. |
| /// @param group_output_channels - number of output channels per group. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, IH, IW, groups * group_input_channels] dimensions |
| /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge a 4D tensor defined in the @a subgraph |
| /// with [groups * group_output_channels, kernel_height, kernel_width, group_input_channels] |
| /// dimensions. |
| /// @param bias_id - Value ID for the bias tensor. The bias tensor must be a 1D tensor defined in the @a subgraph with |
| /// [groups * group_output_channels] dimensions. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, OH, OW, groups * group_output_channels] dimensions. |
| /// @param flags - binary features of the 2D Deconvolution Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_deconvolution_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t padding_top, |
| uint32_t padding_right, |
| uint32_t padding_bottom, |
| uint32_t padding_left, |
| uint32_t adjustment_height, |
| uint32_t adjustment_width, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t upsampling_height, |
| uint32_t upsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t filter_id, |
| uint32_t bias_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2D Depthwise Convolution Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING |
| /// flag is specified. |
| /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param kernel_height - kernel (filter) height. |
| /// @param kernel_width - kernel (filter) width. |
| /// @param subsampling_height - height of subsampling region for convolution output (convolution height stride). |
| /// @param subsampling_width - width of subsampling region for convolution output (convolution width stride). |
| /// @param dilation_height - dilation of kernel elements along the height dimension. |
| /// @param dilation_width - dilation of kernel elements along the width dimension. |
| /// @param depth_multiplier - ratio of output channels to input channels. |
| /// @param input_channels - number of input channels. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, IH, IW, input_channels] dimensions |
| /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge a 4D tensor defined in the @a subgraph |
| /// with [1, kernel_height, kernel_width, input_channels * depth_multiplier] dimensions. |
| /// @param bias_id - Value ID for the bias tensor. The bias tensor must be a 1D tensor defined in the @a subgraph with |
| /// [input_channels * depth_multiplier] dimensions. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, OH, OW, input_channels * depth_multiplier] dimensions. |
| /// @param flags - binary features of the 2D Depthwise Convolution Node. The only currently supported values is |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING. |
| enum xnn_status xnn_define_depthwise_convolution_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t depth_multiplier, |
| size_t input_channels, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t filter_id, |
| uint32_t bias_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2D Global Average Pooling Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a |
| /// 4D tensor defined in the @a subgraph with [N, H, W, C] |
| /// dimensions |
| /// @param output_id - Value ID for the output tensor. The output tensor must be |
| /// a 4D tensor defined in the @a subgraph with [N, 1, 1, C] |
| /// dimensions. |
| /// @param flags - binary features of the 2D Global Average Pooling Node. No |
| /// supported flags are currently defined. |
| enum xnn_status xnn_define_global_average_pooling_2d( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2D Average Pooling Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING |
| /// flag is specified. |
| /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param pooling_height - pooling (kernel) height. |
| /// @param pooling_width - pooling (kernel) width. |
| /// @param stride_height - displacing of the pooling window in the vertical dimension of the input pixels corresponding |
| /// to vertically adjacent output pixels. |
| /// @param stride_width - displacing of the pooling window in the horizontal dimension of the input pixels corresponding |
| /// to horizontally adjacent output pixels. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, IH, IW, channels] dimensions |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, OH, OW, channels] dimensions. |
| /// @param flags - binary features of the 2D Average Pooling Node. The only currently supported values is |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING. |
| enum xnn_status xnn_define_average_pooling_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Fully Connected Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be an |
| /// N-dimensional tensor defined in the @a |
| /// subgraph. |
| /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is not specified, the |
| /// input tensor must be at least 1D and its last dimension |
| /// must match the last dimension of the filter tensor. In |
| /// particular, if input is a 2D tensor, it must have |
| /// [batch_size, input_channels] dimensions. If |
| /// XNN_FLAG_TENSORFLOW_RESHAPE_2D is specified, the number of |
| /// elements in the input tensor must be divisible by the |
| /// input_channels. The tensor will be first flattened into a |
| /// 1D tensor of [num_input_elements] dimensions, then |
| /// reshaped into a 2D tensor of [num_input_elements / |
| /// input_channels, input_channels] dimensions where |
| /// num_input_elements is the total number of elements in the |
| /// input tensor. |
| /// @param filter_id - Value ID for the filter tensor. The filter tensor must ge |
| /// a 2D tensor defined in the @a subgraph |
| /// with [output_channels, input_channels] dimensions. |
| /// @param bias_id - Value ID for the bias tensor. The bias tensor must be a 1D |
| /// tensor defined in the @a subgraph with |
| /// [output_channels] dimensions. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be |
| /// defined in the @a subgraph. |
| /// If XNN_FLAG_TENSORFLOW_RESHAPE_2D is not specified, the |
| /// output tensor must have the same dimensionality as the |
| /// input tensor, all its dimensions but the last one must |
| /// match the corresponding dimensions of the input tensor, |
| /// and the last dimensions of the output tensor must match |
| /// the first dimension of the filter tensor. In particular, |
| /// if input is a 2D tensor, output must be a 2D tensor of |
| /// [batch_size, output_channels] dimensions. If |
| /// XNN_FLAG_TENSORFLOW_RESHAPE_2D is specified, output must |
| /// be a 2D tensor of [num_input_elements / input_channels, |
| /// output_channels] dimensions where num_input_elements is |
| /// the total number of elements in the input tensor. |
| /// @param flags - binary features of the Fully Connected Node. The only |
| /// currently supported value is XNN_FLAG_TENSORFLOW_RESHAPE_2D. |
| enum xnn_status xnn_define_fully_connected(xnn_subgraph_t subgraph, |
| float output_min, float output_max, |
| uint32_t input_id, |
| uint32_t filter_id, uint32_t bias_id, |
| uint32_t output_id, uint32_t flags); |
| |
| /// Define a 2D Max Pooling Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_padding_top - implicit zero-padding above 2D input data. Must be 0 if XNN_FLAG_TENSORFLOW_SAME_PADDING |
| /// flag is specified. |
| /// @param input_padding_right - implicit zero-padding to the right of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_bottom - implicit zero-padding below 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param input_padding_left - implicit zero-padding to the left of 2D input data. Must be 0 if |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING flag is specified. |
| /// @param pooling_height - pooling (kernel) height. |
| /// @param pooling_width - pooling (kernel) width. |
| /// @param stride_height - displacing of the pooling window in the vertical dimension of the input pixels corresponding |
| /// to vertically adjacent output pixels. |
| /// @param stride_width - displacing of the pooling window in the horizontal dimension of the input pixels corresponding |
| /// to horizontally adjacent output pixels. |
| /// @param dilation_height - dilation of pooling elements along the height dimension. |
| /// @param dilation_width - dilation of pooling elements along the width dimension. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, IH, IW, channels] dimensions |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, OH, OW, channels] dimensions. |
| /// @param flags - binary features of the 2D Max Pooling Node. The only currently supported values is |
| /// XNN_FLAG_TENSORFLOW_SAME_PADDING. |
| enum xnn_status xnn_define_max_pooling_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2D ArgMax Pooling Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_padding_top - implicit zero-padding above 2D input data. |
| /// @param input_padding_right - implicit zero-padding to the right of 2D input data. |
| /// @param input_padding_bottom - implicit zero-padding below 2D input data. |
| /// @param input_padding_left - implicit zero-padding to the left of 2D input data. |
| /// @param pooling_height - pooling (kernel) height. Vertical stride between pooling regions match this value. |
| /// @param pooling_width - pooling (kernel) width. Horizontal stride between pooling regions match this value. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, IH, IW, channels] dimensions |
| /// @param output_value_id - Value ID for the output tensor with the maximum values in the pools. The output tensor must |
| /// be a 4D tensor defined in the @a subgraph with [N, OH, OW, channels] dimensions. |
| /// @param output_index_id - Value ID for the output tensor with the indexes of the maximum values in the pools. The |
| /// output tensor must be a 4D tensor defined in the @a subgraph with [N, OH, OW, channels] |
| /// dimensions. |
| /// @param flags - binary features of the 2D ArgMax Pooling Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_argmax_pooling_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t input_id, |
| uint32_t output_value_id, |
| uint32_t output_index_id, |
| uint32_t flags); |
| |
| /// Define a 2D UnPooling Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param padding_top - implicit padding above 2D output data. |
| /// @param padding_right - implicit padding to the right of 2D output data. |
| /// @param padding_bottom - implicit padding below 2D output data. |
| /// @param padding_left - implicit padding to the left of 2D output data. |
| /// @param pooling_height - height of the pooling window. |
| /// @param pooling_width - width of the pooling window. |
| /// @param input_value_id - Value ID for the input tensor with the max-pooling values to invert. The input value tensor |
| /// must be a 4D tensor defined in the @a subgraph with [N, IH, IW, channels] dimensions. |
| /// @param input_index_id - Value ID for the input tensor with the indices of the per-pool maximum values produced by |
| /// a 2D UnPooling Node. The input tensor must be a 4D tensor defined in the @a subgraph with |
| /// [N, IH, IW, channels] dimensions. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, OH, OW, channels] dimensions. |
| /// @param flags - binary features of the 2D UnPooling Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_unpooling_2d( |
| xnn_subgraph_t subgraph, |
| uint32_t padding_top, |
| uint32_t padding_right, |
| uint32_t padding_bottom, |
| uint32_t padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t input_value_id, |
| uint32_t input_index_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2-Input Add Node and add it to a Subgraph. |
| /// |
| /// The 2-Input Add Node computes elementwise addition of two tensor inputs with numpy broadcasting rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Add Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_add2( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2-Input Multiply Node and add it to a Subgraph. |
| /// |
| /// The 2-Input Multiply Node computes elementwise multiplication of two tensor inputs with numpy broadcasting rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Multiply Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_multiply2( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Subtract Node and add it to a Subgraph. |
| /// |
| /// The Subtract Node computes elementwise subtraction of two tensor inputs with numpy broadcasting rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Subtract Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_subtract( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Divide Node and add it to a Subgraph. |
| /// |
| /// The Divide Node computes elementwise division of two tensor inputs with numpy broadcasting rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Divide Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_divide( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2-Input Maximum Node and add it to a Subgraph. |
| /// |
| /// The 2-Input Maximum Node computes elementwise maximum of two tensor inputs with numpy broadcasting rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Maximum Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_maximum2( |
| xnn_subgraph_t subgraph, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a 2-Input Minimum Node and add it to a Subgraph. |
| /// |
| /// The 2-Input Minimum Node computes elementwise minimum of two tensor inputs with numpy broadcasting rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Minimum Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_minimum2( |
| xnn_subgraph_t subgraph, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Squared Difference Node and add it to a Subgraph. |
| /// |
| /// The Squared Difference Node computes elementwise squared difference of two tensor inputs with numpy broadcasting |
| /// rules. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input1_id - Value ID for the first input tensor. The input tensor must be an N-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the second |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param input2_id - Value ID for the second input tensor. The input tensor must be an M-dimensional tensor defined in |
| /// the @a subgraph with each dimension either equal to the corresponding dimension of the first |
| /// input, or equal to 1. In the latter case, the elements of the input tensor are broadcasted along |
| /// that dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a max(N,M)-dimensional tensor defined |
| /// in the @a subgraph with each dimension equal to the maximum between the corresponding dimension |
| /// of the two inputs. |
| /// @param flags - binary features of the Squared Difference Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_squared_difference( |
| xnn_subgraph_t subgraph, |
| uint32_t input1_id, |
| uint32_t input2_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Constant Pad Node with static padding specification and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param pre_paddings - number of padding elements to insert before input elements for every dimension. This array |
| /// must have as many elements as the the number of dimensions in the input tensor. |
| /// @param post_paddings - number of padding elements to insert after input elements for every dimension. This array |
| /// must have as many elements as the the number of dimensions in the input tensor. |
| /// @param padding_value - constant value used to initialize padding elements. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor with padding. |
| /// @param flags - binary features of the Constant Pad Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_static_constant_pad( |
| xnn_subgraph_t subgraph, |
| const size_t* pre_paddings, |
| const size_t* post_paddings, |
| float padding_value, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Reshape Node with static shape specification and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param num_dims - number of shape dimensions in the output tensor. |
| /// @param new_shape - shape dimensions of the output tensor. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor with padding. |
| /// @param flags - binary features of the Reshape Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_static_reshape( |
| xnn_subgraph_t subgraph, |
| size_t num_dims, |
| const size_t* new_shape, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a PReLU (Parametric ReLU) Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, H, W, channels] dimensions |
| /// @param slope_id - Value ID for the bias tensor. The bias tensor must be a 1D tensor defined in the @a subgraph with |
| /// [channels] dimensions. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be a 4D tensor defined in the @a subgraph |
| /// with [N, H, W, channels] dimensions. |
| /// @param flags - binary features of the PReLU Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_prelu( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t slope_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Abs Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Abs Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_abs( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Bankers' Rounding Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Bankers' Rounding Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_bankers_rounding( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Ceiling Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Ceiling Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_ceiling( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Clamp Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param output_min - lower bound for clipping output values. |
| /// @param output_max - upper bound for clipping output values. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Clamp Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_clamp( |
| xnn_subgraph_t subgraph, |
| float output_min, |
| float output_max, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Floor Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Floor Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_floor( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a HardSwish Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the HardSwish Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_hardswish( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Leaky ReLU Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param negative_slope - scale factor for negative input elements. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Leaky ReLU Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_leaky_relu( |
| xnn_subgraph_t subgraph, |
| float negative_slope, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Negate Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Negate Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_negate( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Sigmoid Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Sigmoid Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_sigmoid( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a SoftMax Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph, and have at |
| /// least one dimension. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the SoftMax Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_softmax( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Square Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Square Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_square( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Define a Square Root Node and add it to a Subgraph. |
| /// |
| /// @param subgraph - a Subgraph object that will own the created Node. |
| /// @param input_id - Value ID for the input tensor. The input tensor must be defined in the @a subgraph. |
| /// @param output_id - Value ID for the output tensor. The output tensor must be defined in the @a subgraph, and its |
| /// shape must match the shape of the input tensor. |
| /// @param flags - binary features of the Square Root Node. No supported flags are currently defined. |
| enum xnn_status xnn_define_square_root( |
| xnn_subgraph_t subgraph, |
| uint32_t input_id, |
| uint32_t output_id, |
| uint32_t flags); |
| |
| /// Runtime is a combination of an execution plan for subgraph Nodes and a memory manager for subgraph Values. |
| typedef struct xnn_runtime* xnn_runtime_t; |
| |
| /// Create a empty Runtime object from a subgraph. |
| /// |
| /// @param subgraph - a Subgraph object with all Values and Nodes that would be handled by the runtime. No Values or |
| /// Nodes can be added to the runtime once it is constructed. |
| /// @param threadpool - the thread pool to be used for parallelisation of computations in the runtime. If the thread |
| /// pool is NULL, the computation would run on the caller thread without parallelization. |
| /// @param flags - binary features of the subgraph. No supported flags are currently defined. |
| /// @param runtime_out - pointer to the variable that will be initialized with a handle to the Runtime object upon |
| /// successful return. Once constructed, the Runtime object is independent of the Subgraph object |
| /// used to create it. |
| enum xnn_status xnn_create_runtime_v2( |
| xnn_subgraph_t subgraph, |
| pthreadpool_t threadpool, |
| uint32_t flags, |
| xnn_runtime_t* runtime_out); |
| |
| enum xnn_status xnn_create_runtime( |
| xnn_subgraph_t subgraph, |
| xnn_runtime_t* runtime_out); |
| |
| struct xnn_external_value { |
| uint32_t id; |
| void* data; |
| }; |
| |
| /// Setup data pointers for external inputs and outputs in a Runtime object. |
| /// |
| /// @param runtime - a Runtime object created with @ref xnn_create_runtime or @ref xnn_create_runtime_v2. |
| /// @param num_external_values - the number of external inputs and outputs specified in this call. This number must |
| /// match the number of external inputs and outputs in the runtime, i.e. all external |
| /// inputs and outputs in the runtime must be specified in one call. |
| /// @param external_values - array with location information for all external inputs and outputs in the runtime. |
| enum xnn_status xnn_setup_runtime( |
| xnn_runtime_t runtime, |
| size_t num_external_values, |
| const struct xnn_external_value* external_values); |
| |
| /// Execute forward pass for all operators in the runtime. |
| /// |
| /// @param runtime - the Runtime object with the execution plan to invoke. |
| enum xnn_status xnn_invoke_runtime( |
| xnn_runtime_t runtime); |
| |
| /// Destroy a Runtime object, as well as operators and memory associated with it. |
| /// |
| /// @param runtime - the Runtime object to destroy. |
| enum xnn_status xnn_delete_runtime( |
| xnn_runtime_t runtime); |
| |
| typedef struct xnn_operator* xnn_operator_t; |
| |
| enum xnn_status xnn_run_operator( |
| xnn_operator_t op, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_delete_operator( |
| xnn_operator_t op); |
| |
| #ifndef XNN_NO_F32_OPERATORS |
| |
| enum xnn_status xnn_create_abs_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* abs_op_out); |
| |
| enum xnn_status xnn_setup_abs_nc_f32( |
| xnn_operator_t abs_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_add_nd_f32( |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* add_op_out); |
| |
| enum xnn_status xnn_setup_add_nd_f32( |
| xnn_operator_t add_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_argmax_pooling2d_nhwc_f32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint32_t flags, |
| xnn_operator_t* argmax_pooling_op_out); |
| |
| enum xnn_status xnn_setup_argmax_pooling2d_nhwc_f32( |
| xnn_operator_t argmax_pooling_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| float* output, |
| uint32_t* index, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_average_pooling2d_nhwc_f32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* average_pooling_op_out); |
| |
| enum xnn_status xnn_setup_average_pooling2d_nhwc_f32( |
| xnn_operator_t average_pooling_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_bankers_rounding_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* rounding_op_out); |
| |
| enum xnn_status xnn_setup_bankers_rounding_nc_f32( |
| xnn_operator_t rounding_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_ceiling_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* ceiling_op_out); |
| |
| enum xnn_status xnn_setup_ceiling_nc_f32( |
| xnn_operator_t ceiling_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_clamp_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* clamp_op_out); |
| |
| enum xnn_status xnn_setup_clamp_nc_f32( |
| xnn_operator_t clamp_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_convolution2d_nhwc_f32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_channel_stride, |
| size_t output_channel_stride, |
| const float* kernel, |
| const float* bias, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* convolution_op_out); |
| |
| enum xnn_status xnn_setup_convolution2d_nhwc_f32( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_deconvolution2d_nhwc_f32( |
| uint32_t output_padding_top, |
| uint32_t output_padding_right, |
| uint32_t output_padding_bottom, |
| uint32_t output_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| const float* kernel, |
| const float* bias, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* deconvolution_op_out); |
| |
| enum xnn_status xnn_setup_deconvolution2d_nhwc_f32( |
| xnn_operator_t deconvolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| uint32_t adjustment_height, |
| uint32_t adjustment_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_divide_nd_f32( |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* divide_op_out); |
| |
| enum xnn_status xnn_setup_divide_nd_f32( |
| xnn_operator_t divide_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_fully_connected_nc_f32( |
| size_t input_channels, |
| size_t output_channels, |
| size_t input_stride, |
| size_t output_stride, |
| const float* kernel, |
| const float* bias, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* fully_connected_op_out); |
| |
| enum xnn_status xnn_setup_fully_connected_nc_f32( |
| xnn_operator_t fully_connected_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_floor_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* floor_op_out); |
| |
| enum xnn_status xnn_setup_floor_nc_f32( |
| xnn_operator_t floor_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_global_average_pooling_nwc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* global_average_pooling_op_out); |
| |
| enum xnn_status xnn_setup_global_average_pooling_nwc_f32( |
| xnn_operator_t global_average_pooling_op, |
| size_t batch_size, |
| size_t width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_hardswish_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* hardswish_op_out); |
| |
| enum xnn_status xnn_setup_hardswish_nc_f32( |
| xnn_operator_t hardswish_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_leaky_relu_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float negative_slope, |
| uint32_t flags, |
| xnn_operator_t* leaky_relu_op_out); |
| |
| enum xnn_status xnn_setup_leaky_relu_nc_f32( |
| xnn_operator_t leaky_relu_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_max_pooling2d_nhwc_f32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* max_pooling_op_out); |
| |
| enum xnn_status xnn_setup_max_pooling2d_nhwc_f32( |
| xnn_operator_t max_pooling_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_maximum_nd_f32( |
| uint32_t flags, |
| xnn_operator_t* maximum_op_out); |
| |
| enum xnn_status xnn_setup_maximum_nd_f32( |
| xnn_operator_t maximum_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_minimum_nd_f32( |
| uint32_t flags, |
| xnn_operator_t* minimum_op_out); |
| |
| enum xnn_status xnn_setup_minimum_nd_f32( |
| xnn_operator_t minimum_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_multiply_nd_f32( |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* multiply_op_out); |
| |
| enum xnn_status xnn_setup_multiply_nd_f32( |
| xnn_operator_t multiply_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_negate_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* negate_op_out); |
| |
| enum xnn_status xnn_setup_negate_nc_f32( |
| xnn_operator_t negate_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_prelu_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| const float* negative_slope, |
| uint32_t flags, |
| xnn_operator_t* prelu_op_out); |
| |
| enum xnn_status xnn_setup_prelu_nc_f32( |
| xnn_operator_t prelu_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_resize_bilinear2d_nhwc_f32( |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint32_t flags, |
| xnn_operator_t* resize_op_out); |
| |
| enum xnn_status xnn_setup_resize_bilinear2d_nhwc_f32( |
| xnn_operator_t resize_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| size_t output_height, |
| size_t output_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_sigmoid_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* sigmoid_op_out); |
| |
| enum xnn_status xnn_setup_sigmoid_nc_f32( |
| xnn_operator_t sigmoid_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_softmax_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* softmax_op_out); |
| |
| enum xnn_status xnn_setup_softmax_nc_f32( |
| xnn_operator_t softmax_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_square_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* square_op_out); |
| |
| enum xnn_status xnn_setup_square_nc_f32( |
| xnn_operator_t square_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_square_root_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* sqrt_op_out); |
| |
| enum xnn_status xnn_setup_square_root_nc_f32( |
| xnn_operator_t sqrt_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_squared_difference_nd_f32( |
| uint32_t flags, |
| xnn_operator_t* squared_difference_op_out); |
| |
| enum xnn_status xnn_setup_squared_difference_nd_f32( |
| xnn_operator_t squared_difference_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_subtract_nd_f32( |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* subtract_op_out); |
| |
| enum xnn_status xnn_setup_subtract_nd_f32( |
| xnn_operator_t subtract_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const float* input1, |
| const float* input2, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_truncation_nc_f32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* truncation_op_out); |
| |
| enum xnn_status xnn_setup_truncation_nc_f32( |
| xnn_operator_t truncation_op, |
| size_t batch_size, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| #ifndef XNN_NO_NCHW_OPERATORS |
| |
| enum xnn_status xnn_create_convolution2d_nchw_f32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_channel_stride, |
| size_t output_channel_stride, |
| const float* kernel, |
| const float* bias, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* convolution_op_out); |
| |
| enum xnn_status xnn_setup_convolution2d_nchw_f32( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_global_average_pooling_ncw_f32( |
| size_t channels, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* global_average_pooling_op_out); |
| |
| enum xnn_status xnn_setup_global_average_pooling_ncw_f32( |
| xnn_operator_t global_average_pooling_op, |
| size_t batch_size, |
| size_t width, |
| const float* input, |
| float* output, |
| pthreadpool_t threadpool); |
| |
| #endif // XNN_NO_NCHW_OPERATORS |
| |
| #endif // XNN_NO_F32_OPERATORS |
| |
| #ifndef XNN_NO_X32_OPERATORS |
| |
| enum xnn_status xnn_create_channel_shuffle_nc_x32( |
| size_t groups, |
| size_t group_channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* channel_shuffle_op_out); |
| |
| enum xnn_status xnn_setup_channel_shuffle_nc_x32( |
| xnn_operator_t channel_shuffle_op, |
| size_t batch_size, |
| const void* input, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_constant_pad_nd_x32( |
| const void* padding_value, |
| uint32_t flags, |
| xnn_operator_t* constant_pad_op_out); |
| |
| enum xnn_status xnn_setup_constant_pad_nd_x32( |
| xnn_operator_t constant_pad_op, |
| size_t num_dims, |
| const size_t* input_shape, |
| const size_t* pre_padding, |
| const size_t* post_padding, |
| const void* input, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_copy_nc_x32( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* copy_op_out); |
| |
| enum xnn_status xnn_setup_copy_nc_x32( |
| xnn_operator_t copy_op, |
| size_t batch_size, |
| const void* input, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_unpooling2d_nhwc_x32( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint32_t flags, |
| xnn_operator_t* unpooling_op_out); |
| |
| enum xnn_status xnn_setup_unpooling2d_nhwc_x32( |
| xnn_operator_t unpooling_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const void* input, |
| const uint32_t* index, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| #endif // XNN_NO_X32_OPERATORS |
| |
| #ifndef XNN_NO_F16_OPERATORS |
| |
| enum xnn_status xnn_create_add_nd_f16( |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* add_op_out); |
| |
| enum xnn_status xnn_setup_add_nd_f16( |
| xnn_operator_t add_op, |
| size_t num_input1_dims, |
| const size_t* input1_shape, |
| size_t num_input2_dims, |
| const size_t* input2_shape, |
| const void* input1, |
| const void* input2, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_convolution2d_nhwc_f16( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_channel_stride, |
| size_t output_channel_stride, |
| const void* kernel, |
| const void* bias, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* convolution_op_out); |
| |
| enum xnn_status xnn_setup_convolution2d_nhwc_f16( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const void* input, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_global_average_pooling_nwc_f16( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float output_min, |
| float output_max, |
| uint32_t flags, |
| xnn_operator_t* global_average_pooling_op_out); |
| |
| enum xnn_status xnn_setup_global_average_pooling_nwc_f16( |
| xnn_operator_t global_average_pooling_op, |
| size_t batch_size, |
| size_t width, |
| const void* input, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| #endif // XNN_NO_F16_OPERATORS |
| |
| #ifndef XNN_NO_QU8_OPERATORS |
| |
| enum xnn_status xnn_create_average_pooling2d_nhwc_qu8( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* average_pooling_op_out); |
| |
| enum xnn_status xnn_setup_average_pooling2d_nhwc_qu8( |
| xnn_operator_t average_pooling_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_convolution2d_nhwc_qu8( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t subsampling_height, |
| uint32_t subsampling_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_channel_stride, |
| size_t output_channel_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t kernel_zero_point, |
| float kernel_scale, |
| const uint8_t* kernel, |
| const int32_t* bias, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* convolution_op_out); |
| |
| enum xnn_status xnn_setup_convolution2d_nhwc_qu8( |
| xnn_operator_t convolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_deconvolution2d_nhwc_qu8( |
| uint32_t output_padding_top, |
| uint32_t output_padding_right, |
| uint32_t output_padding_bottom, |
| uint32_t output_padding_left, |
| uint32_t kernel_height, |
| uint32_t kernel_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| uint32_t groups, |
| size_t group_input_channels, |
| size_t group_output_channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t kernel_zero_point, |
| float kernel_scale, |
| const uint8_t* kernel, |
| const int32_t* bias, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* deconvolution_op_out); |
| |
| enum xnn_status xnn_setup_deconvolution2d_nhwc_qu8( |
| xnn_operator_t deconvolution_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| uint32_t adjustment_height, |
| uint32_t adjustment_width, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_fully_connected_nc_qu8( |
| size_t input_channels, |
| size_t output_channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t kernel_zero_point, |
| float kernel_scale, |
| const uint8_t* kernel, |
| const int32_t* bias, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* fully_connected_op_out); |
| |
| enum xnn_status xnn_setup_fully_connected_nc_qu8( |
| xnn_operator_t fully_connected_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_global_average_pooling_nwc_qu8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* global_average_pooling_op_out); |
| |
| enum xnn_status xnn_setup_global_average_pooling_nwc_qu8( |
| xnn_operator_t global_average_pooling_op, |
| size_t batch_size, |
| size_t width, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_leaky_relu_nc_qu8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float negative_slope, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* leaky_relu_op_out); |
| |
| enum xnn_status xnn_setup_leaky_relu_nc_qu8( |
| xnn_operator_t leaky_relu_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_sigmoid_nc_qu8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint8_t input_zero_point, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* sigmoid_op_out); |
| |
| enum xnn_status xnn_setup_sigmoid_nc_qu8( |
| xnn_operator_t sigmoid_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_softmax_nc_qu8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| float input_scale, |
| uint8_t output_zero_point, |
| float output_scale, |
| uint32_t flags, |
| xnn_operator_t* softmax_op_out); |
| |
| enum xnn_status xnn_setup_softmax_nc_qu8( |
| xnn_operator_t softmax_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| #endif // XNN_NO_QU8_OPERATORS |
| |
| #ifndef XNN_NO_U8_OPERATORS |
| |
| enum xnn_status xnn_create_clamp_nc_u8( |
| size_t channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* clamp_op_out); |
| |
| enum xnn_status xnn_setup_clamp_nc_u8( |
| xnn_operator_t clamp_op, |
| size_t batch_size, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| enum xnn_status xnn_create_max_pooling2d_nhwc_u8( |
| uint32_t input_padding_top, |
| uint32_t input_padding_right, |
| uint32_t input_padding_bottom, |
| uint32_t input_padding_left, |
| uint32_t pooling_height, |
| uint32_t pooling_width, |
| uint32_t stride_height, |
| uint32_t stride_width, |
| uint32_t dilation_height, |
| uint32_t dilation_width, |
| size_t channels, |
| size_t input_pixel_stride, |
| size_t output_pixel_stride, |
| uint8_t output_min, |
| uint8_t output_max, |
| uint32_t flags, |
| xnn_operator_t* max_pooling_op_out); |
| |
| enum xnn_status xnn_setup_max_pooling2d_nhwc_u8( |
| xnn_operator_t max_pooling_op, |
| size_t batch_size, |
| size_t input_height, |
| size_t input_width, |
| const uint8_t* input, |
| uint8_t* output, |
| pthreadpool_t threadpool); |
| |
| #endif // XNN_NO_U8_OPERATORS |
| |
| #ifndef XNN_NO_X8_OPERATORS |
| |
| enum xnn_status xnn_create_channel_shuffle_nc_x8( |
| size_t groups, |
| size_t group_channels, |
| size_t input_stride, |
| size_t output_stride, |
| uint32_t flags, |
| xnn_operator_t* channel_shuffle_op_out); |
| |
| enum xnn_status xnn_setup_channel_shuffle_nc_x8( |
| xnn_operator_t channel_shuffle_op, |
| size_t batch_size, |
| const void* input, |
| void* output, |
| pthreadpool_t threadpool); |
| |
| #endif // XNN_NO_X8_OPERATORS |
| |
| #ifdef __cplusplus |
| } // extern "C" |
| #endif |