blob: 6ce311ab926e047e5e9ca6568b9bb65600bf4440 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert NR % 8 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/igemm.h>
$ISA = {0: "avx", 3: "fma3"}[FMA]
void xnn_f32_igemm_minmax_ukernel_${MR}x${NR}s4__${ISA}_broadcast(
size_t mr,
size_t nc,
size_t kc,
size_t ks,
const float**restrict a,
const float*restrict w,
float*restrict c,
size_t cm_stride,
size_t cn_stride,
size_t a_offset,
const float* zero,
const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(float) == 0);
assert(ks != 0);
assert(ks % (${MR} * sizeof(void*)) == 0);
assert(a_offset % sizeof(float) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
float* c0 = c;
$for M in range(1, MR):
float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
c${M} = c${M-1};
}
do {
__m256 vacc0x${ABC[0:8]} = _mm256_load_ps(w);
$for N in range(8, NR, 8):
__m256 vacc0x${ABC[N:N+8]} = _mm256_load_ps(w + ${N});
$for M in range(1, MR):
$for N in range(0, NR, 8):
__m256 vacc${M}x${ABC[N:N+8]} = vacc0x${ABC[N:N+8]};
w += ${NR};
size_t p = ks;
do {
$for M in range(MR):
const float* restrict a${M} = a[${M}];
assert(a${M} != NULL);
if XNN_UNPREDICTABLE(a${M} != zero) {
a${M} = (const float*) ((uintptr_t) a${M} + a_offset);
}
a += ${MR};
size_t k = kc;
while (k >= 4 * sizeof(float)) {
$for M in range(MR):
__m256 va${M} = _mm256_broadcast_ps((const __m128*) a${M});
a${M} += 4;
$for L in range(4):
$for N in range(0, NR, 8):
const __m256 vb${ABC[N:N+8]}c${L} = _mm256_load_ps(w + ${L * NR + N});
$for N in range(0, NR, 8):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+8]} = _mm256_fmadd_ps(va${M}, vb${ABC[N:N+8]}c${L}, vacc${M}x${ABC[N:N+8]});
$else:
vacc${M}x${ABC[N:N+8]} = _mm256_add_ps(vacc${M}x${ABC[N:N+8]}, _mm256_mul_ps(va${M}, vb${ABC[N:N+8]}c${L}));
$if L + 1 != 4:
$for M in range(MR):
va${M} = _mm256_permute_ps(va${M}, _MM_SHUFFLE(0, 3, 2, 1));
w += ${4 * NR};
k -= 4 * sizeof(float);
}
if XNN_UNLIKELY(k != 0) {
$for M in range(MR):
__m256 va${M} = _mm256_broadcast_ps((const __m128*) a${M});
a${M} = (const float*) ((uintptr_t) a${M} + k);
const __m256 vzero = _mm256_setzero_ps();
$for L in range(4):
$for N in range(0, NR, 8):
const __m256 vb${ABC[N:N+8]}c${L} = _mm256_load_ps(w + ${L * NR + N});
$for N in range(0, NR, 8):
$for M in range(MR):
$if FMA == 3:
vacc${M}x${ABC[N:N+8]} = _mm256_fmadd_ps(_mm256_and_ps(va${M}, _mm256_cmp_ps(vb${ABC[N:N+8]}c${L}, vzero, _CMP_NEQ_OQ)), vb${ABC[N:N+8]}c${L}, vacc${M}x${ABC[N:N+8]});
$else:
vacc${M}x${ABC[N:N+8]} = _mm256_add_ps(vacc${M}x${ABC[N:N+8]}, _mm256_mul_ps(_mm256_and_ps(va${M}, _mm256_cmp_ps(vb${ABC[N:N+8]}c${L}, vzero, _CMP_NEQ_OQ)), vb${ABC[N:N+8]}c${L}));
$if L + 1 != 4:
$for M in range(MR):
va${M} = _mm256_permute_ps(va${M}, _MM_SHUFFLE(0, 3, 2, 1));
w += ${4 * NR};
}
p -= ${MR} * sizeof(void*);
} while (p != 0);
const __m256 vmin = _mm256_load_ps(params->avx.min);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_max_ps(vacc${M}x${ABC[N:N+8]}, vmin);
const __m256 vmax = _mm256_load_ps(params->avx.max);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_min_ps(vacc${M}x${ABC[N:N+8]}, vmax);
if XNN_LIKELY(nc >= ${NR}) {
$for M in reversed(range(MR)):
_mm256_storeu_ps(c${M}, vacc${M}x${ABC[0:8]});
$for N in range(8, NR, 8):
_mm256_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+8]});
c${M} = (float*) ((uintptr_t) c${M} + cn_stride);
a = (const float**restrict) ((uintptr_t) a - ks);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 3:
$for M in reversed(range(MR)):
_mm256_storeu_ps(c${M}, vacc${M}x${ABC[0:8]});
$for N in range(8, 1 << LOG2N, 8):
_mm256_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+8]});
$for M in reversed(range(MR)):
$for N in range(0, 1 << (LOG2N - 1), 8):
vacc${M}x${ABC[N:N+8]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+8]};
$for M in reversed(range(MR)):
c${M} += ${1 << LOG2N};
$elif LOG2N == 2:
$for M in reversed(range(MR)):
_mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
vacc${M}x${ABC[0:4]} = _mm256_extractf128_ps(vacc${M}x${ABC[0:8]}, 1);
$for M in reversed(range(MR)):
c${M} += 4;
$elif LOG2N == 1:
$for M in reversed(range(MR)):
_mm_storel_pi((__m64*) c${M}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
vacc${M}x${ABC[0:4]} = _mm_movehl_ps(vacc${M}x${ABC[0:4]}, vacc${M}x${ABC[0:4]});
$for M in reversed(range(MR)):
c${M} += 2;
$elif LOG2N == 0:
$for M in reversed(range(MR)):
_mm_store_ss(c${M}, vacc${M}x${ABC[0:4]});
}
$if LOG2N == 3:
$for M in reversed(range(MR)):
__m128 vacc${M}x${ABC[0:4]} = _mm256_castps256_ps128(vacc${M}x${ABC[0:8]});
nc = 0;
}
} while (nc != 0);
}