blob: 2b653c1665b70e74095d38409f2efa930929e04b [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
#include <xnnpack/requantization.h>
class GAvgPoolMicrokernelTester {
public:
enum class Variant {
Native,
Scalar,
};
inline GAvgPoolMicrokernelTester& m(size_t m) {
assert(m != 0);
this->m_ = m;
return *this;
}
inline size_t m() const {
return this->m_;
}
inline GAvgPoolMicrokernelTester& n(size_t n) {
assert(n != 0);
this->n_ = n;
return *this;
}
inline size_t n() const {
return this->n_;
}
inline GAvgPoolMicrokernelTester& nr(size_t nr) {
assert(nr != 0);
this->nr_ = nr;
return *this;
}
inline size_t nr() const {
return this->nr_;
}
inline GAvgPoolMicrokernelTester& x_stride(size_t x_stride) {
assert(x_stride != 0);
this->x_stride_ = x_stride;
return *this;
}
inline size_t x_stride() const {
if (this->x_stride_ == 0) {
return n();
} else {
assert(this->x_stride_ >= n());
return this->x_stride_;
}
}
inline GAvgPoolMicrokernelTester& x_scale(float x_scale) {
assert(x_scale > 0.0f);
assert(std::isnormal(x_scale));
this->x_scale_ = x_scale;
return *this;
}
inline float x_scale() const {
return this->x_scale_;
}
inline GAvgPoolMicrokernelTester& x_zero_point(uint8_t x_zero_point) {
this->x_zero_point_ = x_zero_point;
return *this;
}
inline uint8_t x_zero_point() const {
return this->x_zero_point_;
}
inline GAvgPoolMicrokernelTester& y_scale(float y_scale) {
assert(y_scale > 0.0f);
assert(std::isnormal(y_scale));
this->y_scale_ = y_scale;
return *this;
}
inline float y_scale() const {
return this->y_scale_;
}
inline GAvgPoolMicrokernelTester& y_zero_point(uint8_t y_zero_point) {
this->y_zero_point_ = y_zero_point;
return *this;
}
inline uint8_t y_zero_point() const {
return this->y_zero_point_;
}
inline GAvgPoolMicrokernelTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline GAvgPoolMicrokernelTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline GAvgPoolMicrokernelTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
void Test(xnn_q8_gavgpool_up_ukernel_function gavgpool, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
std::vector<uint8_t> x((m() - 1) * x_stride() + n() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> zero(n() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> y(n());
std::vector<uint8_t> y_ref(n());
std::vector<float> y_fp(n());
std::vector<int32_t> y_acc(n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), std::ref(u8rng));
std::fill(y.begin(), y.end(), 0xA5);
// Prepare quantization parameters.
union xnn_q8_avgpool_params quantization_params = { };
switch (variant) {
case Variant::Native:
quantization_params = xnn_init_q8_avgpool_params(
-int32_t(x_zero_point()) * int32_t(m()),
x_scale() / (y_scale() * float(m())),
y_zero_point(), qmin(), qmax());
break;
case Variant::Scalar:
quantization_params = xnn_init_scalar_q8_avgpool_params(
-int32_t(x_zero_point()) * int32_t(m()),
x_scale() / (y_scale() * float(m())),
y_zero_point(), qmin(), qmax());
break;
}
const union xnn_q8_avgpool_params scalar_quantization_params =
xnn_init_scalar_q8_avgpool_params(
-int32_t(x_zero_point()) * int32_t(m()),
x_scale() / (y_scale() * float(m())),
y_zero_point(), qmin(), qmax());
// Compute reference results.
for (size_t j = 0; j < n(); j++) {
int32_t acc = scalar_quantization_params.scalar.bias;
for (size_t i = 0; i < m(); i++) {
acc += x[i * x_stride() + j];
}
y_acc[j] = acc;
y_ref[j] = xnn_avgpool_quantize(acc, scalar_quantization_params);
y_fp[j] = float(acc) * (x_scale() / (y_scale() * float(m()))) + float(y_zero_point());
y_fp[j] = std::min<float>(y_fp[j], float(qmax()));
y_fp[j] = std::max<float>(y_fp[j], float(qmin()));
}
// Call optimized micro-kernel.
gavgpool(m(), n(),
x.data(), x_stride() * sizeof(uint8_t),
zero.data(),
y.data(),
&quantization_params);
// Verify results.
for (size_t i = 0; i < n(); i++) {
ASSERT_LE(uint32_t(y[i]), uint32_t(qmax()))
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_GE(uint32_t(y[i]), uint32_t(qmin()))
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.5f)
<< "at position " << i << ", m = " << m() << ", n = " << n() << ", acc = " << y_acc[i];
ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i]))
<< "at position " << i << ", m = " << m() << ", n = " << n() << ", acc = " << y_acc[i];
}
}
}
void Test(xnn_q8_gavgpool_mp_ukernel_function gavgpool, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
std::vector<uint8_t> x((m() - 1) * x_stride() + n() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<int32_t, AlignedAllocator<int32_t, 64>> buf(n() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> zero(n() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> y(n());
std::vector<uint8_t> y_ref(n());
std::vector<float> y_fp(n());
std::vector<int32_t> y_acc(n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), std::ref(u8rng));
std::fill(y.begin(), y.end(), 0xA5);
// Prepare quantization parameters.
union xnn_q8_avgpool_params quantization_params = { };
switch (variant) {
case Variant::Native:
quantization_params = xnn_init_q8_avgpool_params(
-int32_t(x_zero_point()) * int32_t(m()),
x_scale() / (y_scale() * float(m())),
y_zero_point(), qmin(), qmax());
break;
case Variant::Scalar:
quantization_params = xnn_init_scalar_q8_avgpool_params(
-int32_t(x_zero_point()) * int32_t(m()),
x_scale() / (y_scale() * float(m())),
y_zero_point(), qmin(), qmax());
break;
}
const union xnn_q8_avgpool_params scalar_quantization_params =
xnn_init_scalar_q8_avgpool_params(
-int32_t(x_zero_point()) * int32_t(m()),
x_scale() / (y_scale() * float(m())),
y_zero_point(), qmin(), qmax());
// Compute reference results.
for (size_t j = 0; j < n(); j++) {
int32_t acc = scalar_quantization_params.scalar.bias;
for (size_t i = 0; i < m(); i++) {
acc += x[i * x_stride() + j];
}
y_acc[j] = acc;
y_ref[j] = xnn_avgpool_quantize(acc, scalar_quantization_params);
y_fp[j] = float(acc) * (x_scale() / (y_scale() * float(m()))) + float(y_zero_point());
y_fp[j] = std::min<float>(y_fp[j], float(qmax()));
y_fp[j] = std::max<float>(y_fp[j], float(qmin()));
}
// Call optimized micro-kernel.
gavgpool(m(), n(),
x.data(), x_stride() * sizeof(uint8_t),
zero.data(),
buf.data(),
y.data(),
&quantization_params);
// Verify results.
for (size_t i = 0; i < n(); i++) {
ASSERT_LE(uint32_t(y[i]), uint32_t(qmax()))
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_GE(uint32_t(y[i]), uint32_t(qmin()))
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_NEAR(float(int32_t(y[i])), y_fp[i], 0.5f)
<< "at position " << i << ", m = " << m() << ", n = " << n() << ", acc = " << y_acc[i];
ASSERT_EQ(uint32_t(y_ref[i]), uint32_t(y[i]))
<< "at position " << i << ", m = " << m() << ", n = " << n() << ", acc = " << y_acc[i];
}
}
}
void Test(xnn_f32_gavgpool_up_ukernel_function gavgpool, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> x((m() - 1) * x_stride() + n() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> zero(n() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y(n());
std::vector<float> y_ref(n());
std::fill(zero.begin(), zero.end(), 0.0f);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), std::ref(f32rng));
std::fill(y.begin(), y.end(), std::nanf(""));
// Compute reference results, without clamping.
for (size_t j = 0; j < n(); j++) {
float acc = 0.0f;
for (size_t i = 0; i < m(); i++) {
acc += x[i * x_stride() + j];
}
y_ref[j] = acc / float(m());
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Clamp reference results.
for (float& y_value : y_ref) {
y_value = std::max(std::min(y_value, y_max), y_min);
}
// Prepare micro-kernel parameters.
union xnn_f32_avgpool_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_avgpool_params(
1.0f / float(m()), y_min, y_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_avgpool_params(
1.0f / float(m()), y_min, y_max);
break;
}
// Call optimized micro-kernel.
gavgpool(m(), n(),
x.data(), x_stride() * sizeof(float),
zero.data(),
y.data(),
&params);
// Verify results.
for (size_t i = 0; i < n(); i++) {
ASSERT_LE(y[i], y_max)
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_GE(y[i], y_min)
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
<< "at position " << i << ", m = " << m() << ", n = " << n();
}
}
}
void Test(xnn_f32_gavgpool_mp_ukernel_function gavgpool, Variant variant = Variant::Native) const {
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> x((m() - 1) * x_stride() + n() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float, AlignedAllocator<float, 64>> buf(n() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> zero(n() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> y(n());
std::vector<float> y_ref(n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(x.begin(), x.end(), std::ref(f32rng));
std::fill(y.begin(), y.end(), std::nanf(""));
// Compute reference results, without clamping.
for (size_t j = 0; j < n(); j++) {
float acc = 0.0f;
for (size_t i = 0; i < m(); i++) {
acc += x[i * x_stride() + j];
}
y_ref[j] = acc / float(m());
}
// Compute clamping parameters.
const float accumulated_min = *std::min_element(y_ref.cbegin(), y_ref.cend());
const float accumulated_max = *std::max_element(y_ref.cbegin(), y_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float y_min = accumulated_min + float(qmin()) / 255.0f * accumulated_range;
const float y_max = accumulated_max - float(255 - qmax()) / 255.0f * accumulated_range;
// Prepare micro-kernel parameters.
union xnn_f32_avgpool_params params = { };
switch (variant) {
case Variant::Native:
params = xnn_init_f32_avgpool_params(
1.0f / float(m()), y_min, y_max);
break;
case Variant::Scalar:
params = xnn_init_scalar_f32_avgpool_params(
1.0f / float(m()), y_min, y_max);
break;
}
// Clamp reference results.
for (float& y_value : y_ref) {
y_value = std::max(std::min(y_value, y_max), y_min);
}
// Call optimized micro-kernel.
gavgpool(m(), n(),
x.data(), x_stride() * sizeof(float),
zero.data(),
buf.data(),
y.data(),
&params);
// Verify results.
for (size_t i = 0; i < n(); i++) {
ASSERT_LE(y[i], y_max)
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_GE(y[i], y_min)
<< "at position " << i << ", m = " << m() << ", n = " << n();
ASSERT_NEAR(y[i], y_ref[i], std::abs(y_ref[i]) * 1.0e-6f)
<< "at position " << i << ", m = " << m() << ", n = " << n();
}
}
}
private:
size_t m_{1};
size_t n_{1};
size_t nr_{1};
size_t x_stride_{0};
float x_scale_{1.25f};
float y_scale_{0.75f};
uint8_t x_zero_point_{121};
uint8_t y_zero_point_{133};
uint8_t qmin_{0};
uint8_t qmax_{255};
size_t iterations_{15};
};