blob: 5b555530b0693d6aae1f25b7462e0f619b63cee9 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/common.h>
#include <xnnpack/compute.h>
#include <xnnpack/indirection.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/operator.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
static inline size_t compute_output_dimension(
size_t padded_input_dimension,
size_t kernel_dimension,
size_t dilation_dimension,
size_t subsampling_dimension)
{
const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1;
return doz(padded_input_dimension, effective_kernel_dimension) / subsampling_dimension + 1;
}
enum xnn_status xnn_create_convolution2d_nchw_f32(
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t subsampling_height,
uint32_t subsampling_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
const float* kernel,
const float* bias,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* convolution_op_out)
{
xnn_operator_t convolution_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
goto error;
}
if (subsampling_width == 0 || subsampling_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
"subsampling dimensions must be non-zero",
subsampling_width, subsampling_height);
goto error;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
goto error;
}
if (groups == 0) {
xnn_log_error(
"failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
goto error;
}
if (group_input_channels == 0) {
xnn_log_error(
"failed to create Convolution operator with %zu input channels per group: "
"number of channels must be non-zero",
group_input_channels);
goto error;
}
if (group_output_channels == 0) {
xnn_log_error(
"failed to create Convolution operator with %zu output channels per group: "
"number of channels must be non-zero",
group_output_channels);
goto error;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to create Convolution operator with NaN output lower bound: lower bound must be non-NaN");
goto error;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to create Convolution operator with NaN output upper bound: upper bound must be non-NaN");
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Convolution operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
goto error;
}
if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
xnn_log_error(
"failed to create Depthwise Convolution operator with %zu input channels per group: "
"Depthwise Convolution must have exactly 1 input channel per group",
group_input_channels);
goto error;
}
status = xnn_status_unsupported_parameter;
enum xnn_ukernel_type ukernel_type;
struct spchw_dwconv_parameters* dwconv_parameters = NULL;
// Supported cases:
// + 1x1 convolution (no groups)
// + 3x3 stride-2 with 3 input channels and NHWC input layout
// + 3x3 stride-2 depthwise convolution with horizontal padding 1 & no vertical padding
// - 3x3 stride-1 depthwise convolution with horizontal padding 1 & no vertical padding
// - 5x5 stride-2 depthwise convolution with horizontal padding 2 & no vertical padding
// - 5x5 stride-1 depthwise convolution with horizontal padding 2 & no vertical padding
const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
const bool is_1x1 = kernel_width == 1 && kernel_height == 1 && subsampling_height == 1 && subsampling_width == 1;
const bool is_3x3 = kernel_width == 3 && kernel_height == 3 && dilation_height == 1 && dilation_width == 1;
const bool is_5x5 = kernel_width == 5 && kernel_height == 5 && dilation_height == 1 && dilation_width == 1;
const bool nhwc_input = (flags & XNN_FLAG_INPUT_NHWC) != 0;
if (is_1x1 && !any_padding && !nhwc_input && groups == 1 && xnn_params.f32.spmm.ukernel != NULL) {
ukernel_type = xnn_ukernel_type_spmm;
} else if (is_3x3 && subsampling_height == 2 && subsampling_width == 2 &&
input_padding_top == 1 && input_padding_left == 1 && input_padding_bottom == 1 && input_padding_right == 1 &&
nhwc_input && groups == 1 && xnn_params.f32.hwc2spchw_dconv3x3c3s2.ukernel_with_symm_padding != NULL)
{
ukernel_type = xnn_ukernel_type_dconv2d_hwc2spchw;
} else if (is_3x3 && subsampling_height == 1 && subsampling_width == 1 &&
input_padding_top == 0 && input_padding_left == 1 && input_padding_bottom == 0 && input_padding_right == 1 &&
!nhwc_input && group_input_channels == 1 && group_output_channels == 1 && xnn_params.f32.spchw_dwconv3x3.ukernel != NULL)
{
ukernel_type = xnn_ukernel_type_dwconv;
dwconv_parameters = &xnn_params.f32.spchw_dwconv3x3;
} else if (is_3x3 && subsampling_height == 2 && subsampling_width == 2 &&
input_padding_top == 0 && input_padding_left == 1 && input_padding_bottom == 0 && input_padding_right == 1 &&
!nhwc_input && group_input_channels == 1 && group_output_channels == 1 && xnn_params.f32.spchw_dwconv3x3s2.ukernel != NULL)
{
ukernel_type = xnn_ukernel_type_dwconv;
dwconv_parameters = &xnn_params.f32.spchw_dwconv3x3s2;
} else if (is_5x5 && subsampling_height == 1 && subsampling_width == 1 &&
input_padding_top == 0 && input_padding_left == 2 && input_padding_bottom == 0 && input_padding_right == 2 &&
!nhwc_input && group_input_channels == 1 && group_output_channels == 1 && xnn_params.f32.spchw_dwconv5x5.ukernel != NULL)
{
ukernel_type = xnn_ukernel_type_dwconv;
dwconv_parameters = &xnn_params.f32.spchw_dwconv5x5;
} else if (is_5x5 && subsampling_height == 2 && subsampling_width == 2 &&
input_padding_top == 0 && input_padding_left == 2 && input_padding_bottom == 0 && input_padding_right == 2 &&
!nhwc_input && group_input_channels == 1 && group_output_channels == 1 && xnn_params.f32.spchw_dwconv5x5s2.ukernel != NULL)
{
ukernel_type = xnn_ukernel_type_dwconv;
dwconv_parameters = &xnn_params.f32.spchw_dwconv5x5s2;
} else {
xnn_log_error(
"failed to create Convolution operator: only selected Convolution parameters are supported");
goto error;
}
status = xnn_status_out_of_memory;
convolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (convolution_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator));
goto error;
}
switch (ukernel_type) {
case xnn_ukernel_type_spmm:
{
assert(kernel_height == 1);
assert(kernel_width == 1);
assert(groups == 1);
size_t num_nonzeroes = 0;
size_t num_nonzero_blocks2 = 0;
size_t num_nonzero_blocks4 = 0;
for (size_t oc = 0; oc < round_down_po2(group_output_channels, 4); oc += 4) {
for (size_t ic = 0; ic < group_input_channels; ic++) {
const size_t row0_nonzero = (size_t) (kernel[oc * group_input_channels + ic] != 0.0f);
const size_t row1_nonzero = (size_t) (kernel[(oc + 1) * group_input_channels + ic] != 0.0f);
const size_t row2_nonzero = (size_t) (kernel[(oc + 2) * group_input_channels + ic] != 0.0f);
const size_t row3_nonzero = (size_t) (kernel[(oc + 3) * group_input_channels + ic] != 0.0f);
num_nonzeroes += row0_nonzero + row1_nonzero + row2_nonzero + row3_nonzero;
num_nonzero_blocks2 += (row0_nonzero | row1_nonzero) + (row2_nonzero | row3_nonzero);
num_nonzero_blocks4 += (row0_nonzero | row1_nonzero | row2_nonzero | row3_nonzero);
}
}
const size_t num_block4_nonzeroes = num_nonzeroes;
for (size_t oc = round_down_po2(group_output_channels, 4); oc < round_down_po2(group_output_channels, 2); oc += 2) {
for (size_t ic = 0; ic < group_input_channels; ic++) {
const size_t row0_nonzero = (size_t) (kernel[oc * group_input_channels + ic] != 0.0f);
const size_t row1_nonzero = (size_t) (kernel[(oc + 1) * group_input_channels + ic] != 0.0f);
num_nonzeroes += row0_nonzero + row1_nonzero;
num_nonzero_blocks2 += (row0_nonzero | row1_nonzero);
}
}
const size_t num_block2_nonzeroes = num_nonzeroes;
for (size_t oc = round_down_po2(group_output_channels, 2); oc < group_output_channels; oc++) {
for (size_t ic = 0; ic < group_input_channels; ic++) {
num_nonzeroes += (size_t) (kernel[oc * group_input_channels + ic] != 0.0f);
}
}
size_t output_channels_block_size = 1;
size_t num_output_channel_blocks = group_output_channels;
size_t num_nonzero_values = num_nonzeroes;
size_t num_nonzero_blocks = num_nonzeroes;
const struct spmm_parameters* spmm_parameters = &xnn_params.f32.spmm;
if (num_block4_nonzeroes * 5 >= num_nonzero_blocks4 * 18 && xnn_params.f32.spmm4.ukernel != NULL) {
// 4-channel blocks have 90%+ non-zeroes
output_channels_block_size = 4;
num_output_channel_blocks = num_output_channel_blocks / 4 + num_output_channel_blocks % 4;
spmm_parameters = &xnn_params.f32.spmm4;
// Non-zeroes which don't fit into whole 4-channel blocks, processed one-by-one
const size_t num_remaining_nonzeroes = num_nonzeroes - num_block4_nonzeroes;
num_nonzero_values = num_nonzero_blocks4 * 4 + num_remaining_nonzeroes;
num_nonzero_blocks = num_nonzero_blocks4 + num_remaining_nonzeroes;
} else if (num_block2_nonzeroes * 5 >= num_nonzero_blocks2 * 9 && xnn_params.f32.spmm2.ukernel != NULL) {
// 2-channel blocks have 90%+ non-zeroes
output_channels_block_size = 2;
num_output_channel_blocks = num_output_channel_blocks / 2 + num_output_channel_blocks % 2;
spmm_parameters = &xnn_params.f32.spmm2;
// Non-zeroes which don't fit into whole 2-channel blocks, processed one-by-one
const size_t num_remaining_nonzeroes = num_nonzeroes - num_block2_nonzeroes;
num_nonzero_values = num_nonzero_blocks2 * 2 + num_remaining_nonzeroes;
num_nonzero_blocks = num_nonzero_blocks2 + num_remaining_nonzeroes;
}
// Sparse representation of weights consists of four components:
// 1. An array of float values storing non-zero kernel elements, and all (group_output_channels) bias elements.
// All elements within non-zero block are assumed to be non-zero.
// 2. An array of int32_t values storing increment for input pointer after each processed tile. This array is
// derived from scaled difference in array 2 using parameters to setup function.
// 3. An array of uint32_t values storing the number of non-zero kernel elements per each output channel.
// 4. An array of int32_t values storing scaled [by sizeof(input element)] difference between input channels
// corresponding to successive non-zero blocks.
const size_t packed_weights_size = num_output_channel_blocks * sizeof(uint32_t) +
(num_nonzero_blocks * 2) * sizeof(int32_t) + (num_nonzero_values + group_output_channels) * sizeof(float);
convolution_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
goto error;
}
convolution_op->num_nonzero_values = num_nonzero_values;
convolution_op->num_nonzero_blocks = num_nonzero_blocks;
convolution_op->num_output_channel_blocks = num_output_channel_blocks;
float* nonzero_values = convolution_op->packed_weights;
int32_t* input_increments = (int32_t*) (nonzero_values + num_nonzero_values + group_output_channels);
uint32_t* output_channel_nonzeros = (uint32_t*) (input_increments + num_nonzero_blocks);
int32_t* input_channel_diffs = (int32_t*) (output_channel_nonzeros + num_output_channel_blocks);
memset(output_channel_nonzeros, 0, num_output_channel_blocks * sizeof(uint32_t));
status = xnn_status_unsupported_parameter;
size_t first_ic = 0, last_ic = 0;
bool first_nonzero = true;
for (size_t ocb = 0; ocb < round_down_po2(group_output_channels, output_channels_block_size); ocb += output_channels_block_size) {
if XNN_LIKELY(bias != NULL) {
for (size_t oco = 0; oco < output_channels_block_size; oco++) {
*nonzero_values++ = bias[ocb + oco];
}
} else {
for (size_t oco = 0; oco < output_channels_block_size; oco++) {
*nonzero_values++ = 0.0f;
}
}
for (size_t ic = 0; ic < group_input_channels; ic++) {
bool is_nonzero_block = false;
for (size_t oco = 0; oco < output_channels_block_size; oco++) {
is_nonzero_block |= (kernel[(ocb + oco) * group_input_channels + ic] != 0.0f);
}
if (is_nonzero_block) {
for (size_t oco = 0; oco < output_channels_block_size; oco++) {
*nonzero_values++ = kernel[(ocb + oco) * group_input_channels + ic];
}
if (first_nonzero) {
first_ic = ic;
} else {
const int64_t diff = (int64_t) ((uint64_t) ic - (uint64_t) last_ic) * (int64_t) sizeof(float);
if (diff != (int64_t) (int32_t) diff) {
xnn_log_error("failed to convert kernel to sparse representation: "
"scaled difference in input channels exceeds int32_t range");
goto error;
}
*input_channel_diffs++ = (int32_t) diff;
}
first_nonzero = false;
last_ic = ic;
*output_channel_nonzeros += 1;
}
}
output_channel_nonzeros += 1;
}
for (size_t oc = round_down_po2(group_output_channels, output_channels_block_size); oc < group_output_channels; oc++) {
if XNN_LIKELY(bias != NULL) {
*nonzero_values++ = bias[oc];
} else {
*nonzero_values++ = 0.0f;
}
for (size_t ic = 0; ic < group_input_channels; ic++) {
const float weight = kernel[oc * group_input_channels + ic];
if (weight != 0.0f) {
*nonzero_values++ = weight;
if (first_nonzero) {
first_ic = ic;
} else {
const int64_t diff = (int64_t) ((uint64_t) ic - (uint64_t) last_ic) * (int64_t) sizeof(float);
if (diff != (int64_t) (int32_t) diff) {
xnn_log_error("failed to convert kernel to sparse representation: "
"scaled difference in input channels exceeds int32_t range");
goto error;
}
*input_channel_diffs++ = (int32_t) diff;
}
first_nonzero = false;
last_ic = ic;
*output_channel_nonzeros += 1;
}
}
output_channel_nonzeros += 1;
}
// If there are any non-zero elements, we have to return to the initial input channel.
if (!first_nonzero) {
const int64_t diff = (int64_t) ((uint64_t) first_ic - (uint64_t) last_ic) * (int64_t) sizeof(float);
if (diff != (int64_t) (int32_t) diff) {
xnn_log_error("failed to convert kernel to sparse representation: "
"scaled difference in input channels exceeds int32_t range");
goto error;
}
*input_channel_diffs++ = (int32_t) diff;
}
convolution_op->first_input_channel = first_ic;
convolution_op->ukernel.spmm = (struct xnn_ukernel_spmm) {
.function = spmm_parameters->ukernel,
.mr = spmm_parameters->mr,
};
break;
}
case xnn_ukernel_type_dconv2d_hwc2spchw:
{
assert(groups == 1);
const size_t packed_group_output_channels =
round_up(group_output_channels, xnn_params.f32.hwc2spchw_dconv3x3c3s2.output_channel_tile);
const size_t packed_weights_size = groups * packed_group_output_channels *
(group_input_channels * kernel_height * kernel_width + 1 /* bias */) * sizeof(float);
convolution_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
goto error;
}
xnn_pack_f32_dconv_oki_w(
group_output_channels,
group_input_channels,
xnn_params.f32.hwc2spchw_dconv3x3c3s2.output_channel_tile,
kernel_height, kernel_width,
kernel, bias, convolution_op->packed_weights);
convolution_op->ukernel.dconv2d = (struct xnn_ukernel_dconv2d) {
.hwc2spchw_function = xnn_params.f32.hwc2spchw_dconv3x3c3s2.ukernel_with_symm_padding,
.output_height_tile = xnn_params.f32.hwc2spchw_dconv3x3c3s2.output_height_tile,
.output_channel_tile = xnn_params.f32.hwc2spchw_dconv3x3c3s2.output_channel_tile,
};
break;
}
case xnn_ukernel_type_dwconv:
{
assert(dwconv_parameters != NULL);
assert(group_input_channels == 1);
assert(group_output_channels == 1);
const size_t packed_weights_size = groups * (kernel_height * kernel_width + 1 /* bias */) * sizeof(float);
convolution_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
if (convolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
goto error;
}
xnn_pack_f32_spchw_dwconv_ghw_w(
kernel_height * kernel_width, groups,
kernel, bias, convolution_op->packed_weights);
convolution_op->ukernel.dwconv2d = (struct xnn_ukernel_dwconv2d) {
.spchw_function = dwconv_parameters->ukernel,
.input_width_tile = dwconv_parameters->input_width_tile,
.output_width_tile = dwconv_parameters->output_width_tile,
};
break;
}
default:
XNN_UNREACHABLE;
}
convolution_op->padding_top = input_padding_top;
convolution_op->padding_right = input_padding_right;
convolution_op->padding_bottom = input_padding_bottom;
convolution_op->padding_left = input_padding_left;
convolution_op->kernel_height = kernel_height;
convolution_op->kernel_width = kernel_width;
convolution_op->stride_height = subsampling_height;
convolution_op->stride_width = subsampling_width;
convolution_op->dilation_height = dilation_height;
convolution_op->dilation_width = dilation_width;
convolution_op->groups = groups;
convolution_op->group_input_channels = group_input_channels;
convolution_op->group_output_channels = group_output_channels;
if (ukernel_type == xnn_ukernel_type_dwconv) {
convolution_op->f32_spchw_params = xnn_init_f32_spchw_params(0, output_min, output_max);
} else {
convolution_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
}
convolution_op->type = xnn_operator_type_convolution_nchw_f32;
convolution_op->ukernel.type = ukernel_type;
convolution_op->state = xnn_run_state_invalid;
*convolution_op_out = convolution_op;
return xnn_status_success;
error:
xnn_delete_operator(convolution_op);
return status;
}
static enum xnn_status setup_convolution2d_nchw(
xnn_operator_t convolution_op,
size_t batch_size,
size_t input_batch_stride,
size_t output_batch_stride,
size_t input_height,
size_t input_width,
const void* input,
void* output,
uint32_t log2_input_element_size,
uint32_t log2_filter_element_size,
uint32_t bias_element_size,
uint32_t log2_output_element_size,
const void* params,
size_t num_threads)
{
convolution_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Convolution operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_width == 0 || input_height == 0) {
xnn_log_error(
"failed to setup Convolution operator with %zux%zu input: input dimensions must be non-zero",
input_width, input_height);
return xnn_status_invalid_parameter;
}
const uint32_t groups = convolution_op->groups;
const size_t group_input_channels = convolution_op->group_input_channels;
const size_t input_neurons = groups * group_input_channels * input_height * input_width;
if (input_batch_stride < input_neurons) {
xnn_log_error(
"failed to setup Convolution operator with input batch stride of %zu: "
"stride must be at least as large as the number of input neurons (%" PRIu32 "x%zux%zux%zu)",
input_batch_stride, groups, group_input_channels, input_height, input_width);
return xnn_status_invalid_parameter;
}
const size_t output_height = compute_output_dimension(
convolution_op->padding_top + input_height + convolution_op->padding_bottom,
convolution_op->kernel_height,
convolution_op->dilation_height,
convolution_op->stride_height);
const size_t output_width = compute_output_dimension(
convolution_op->padding_left + input_width + convolution_op->padding_right,
convolution_op->kernel_width,
convolution_op->dilation_width,
convolution_op->stride_width);
const size_t group_output_channels = convolution_op->group_output_channels;
const size_t output_neurons = groups * group_output_channels * output_height * output_width;
if (output_batch_stride < output_neurons) {
xnn_log_error(
"failed to setup Convolution operator with output batch stride of %zu: "
"stride must be at least as large as the number of output neurons (%" PRIu32 "x%zux%zux%zu)",
output_batch_stride, groups, group_output_channels, output_height, output_width);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
convolution_op->state = xnn_run_state_skip;
return xnn_status_success;
}
convolution_op->batch_size = batch_size;
convolution_op->input_height = input_height;
convolution_op->input_width = input_width;
convolution_op->input = input;
convolution_op->output = output;
switch (convolution_op->ukernel.type) {
case xnn_ukernel_type_spmm:
{
const size_t num_nonzero_values = convolution_op->num_nonzero_values;
const size_t num_nonzero_blocks = convolution_op->num_nonzero_blocks;
const size_t num_output_channel_blocks = convolution_op->num_output_channel_blocks;
convolution_op->num_nonzero_values = num_nonzero_values;
convolution_op->num_nonzero_blocks = num_nonzero_blocks;
convolution_op->num_output_channel_blocks = num_output_channel_blocks;
float* nonzero_values = convolution_op->packed_weights;
int32_t* input_increments = (int32_t*) (nonzero_values + num_nonzero_values + convolution_op->group_output_channels);
uint32_t* output_channel_nonzeros = (uint32_t*) (input_increments + num_nonzero_blocks);
int32_t* input_channel_diffs = (int32_t*) (output_channel_nonzeros + num_output_channel_blocks);
// const uint32_t* output_channel_nonzeros = convolution_op->packed_weights;
// const int32_t* input_channel_diffs = (const int32_t*) (output_channel_nonzeros + num_output_channel_blocks);
// int32_t* input_increments = (int32_t*) (input_channel_diffs + num_nonzero_blocks);
// const void* packed_weights = (const void*) (input_increments + num_nonzero_blocks);
const size_t input_size = input_height * input_width;
for (size_t i = 0; i < num_nonzero_blocks; i++) {
const int32_t diff = input_channel_diffs[i];
const int64_t increment = (int64_t) diff * input_size;
if ((int64_t) (int32_t) increment != increment) {
xnn_log_error("failed to setup Convolution operator with sparse kernel representation: "
"input increment exceeds int32_t range");
return xnn_status_unsupported_parameter;
}
input_increments[i] = (int32_t) increment;
}
convolution_op->context.spmm = (struct spmm_context) {
.n = group_output_channels,
.a = input + (convolution_op->first_input_channel * input_size * sizeof(float)),
.packed_weights = nonzero_values,
.input_increments = input_increments,
.output_channel_nonzeros = output_channel_nonzeros,
.c = output,
.batched_a_stride = input_batch_stride << log2_input_element_size,
.batched_c_stride = output_batch_stride << log2_output_element_size,
.ukernel = convolution_op->ukernel.spmm.function,
};
memcpy(&convolution_op->context.spmm.params, params, sizeof(convolution_op->context.spmm.params));
const size_t mr = convolution_op->ukernel.spmm.mr;
size_t mc = input_size;
if (num_threads > 1) {
const size_t target_tiles_per_thread = 5;
const size_t max_mc = divide_round_up(input_size, num_threads * target_tiles_per_thread);
if (max_mc < mc) {
mc = min(mc, divide_round_up(mc, max_mc * mr) * mr);
}
}
convolution_op->compute.type = xnn_parallelization_type_2d_tile_1d;
convolution_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_spmm;
convolution_op->compute.range[0] = batch_size;
convolution_op->compute.range[1] = input_size;
convolution_op->compute.tile[0] = mc;
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
case xnn_ukernel_type_dconv2d_hwc2spchw:
{
const size_t zero_size = (input_width * convolution_op->group_input_channels << log2_input_element_size) + XNN_EXTRA_BYTES;
void* zero_buffer = xnn_reallocate_memory(convolution_op->zero_buffer, zero_size);
if (zero_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for zero padding", sizeof(struct xnn_operator));
return xnn_status_out_of_memory;
}
memset(zero_buffer, 0, zero_size);
convolution_op->zero_buffer = zero_buffer;
convolution_op->context.dconv2d = (struct dconv2d_context) {
.input_height = input_height,
.input_width = input_width,
.input = input,
.input_batch_stride = input_batch_stride << log2_input_element_size,
.zero = zero_buffer,
.packed_weights = convolution_op->packed_weights,
.output = output,
.output_batch_stride = output_batch_stride << log2_input_element_size,
.input_padding_top = convolution_op->padding_top,
.output_channels = convolution_op->group_output_channels,
.output_height_stride = output_width << log2_output_element_size,
.output_channel_stride = output_height * output_width << log2_output_element_size,
.hwc2spchw_ukernel = convolution_op->ukernel.dconv2d.hwc2spchw_function,
};
memcpy(&convolution_op->context.dconv2d.params, params, sizeof(convolution_op->context.dconv2d.params));
size_t output_height_slice = output_height;
const size_t output_height_tile = convolution_op->ukernel.dconv2d.output_height_tile;
if (num_threads > 1) {
const size_t target_tiles_per_thread = 5;
const size_t max_output_height_slice = divide_round_up(output_height, num_threads * target_tiles_per_thread);
if (max_output_height_slice < output_height_slice) {
output_height_slice = min(output_height_slice,
divide_round_up(output_height_slice, max_output_height_slice * output_height_tile) * output_height_tile);
}
}
convolution_op->compute.type = xnn_parallelization_type_2d_tile_1d;
convolution_op->compute.task_2d_tile_1d = (pthreadpool_task_2d_tile_1d_t) xnn_compute_dconv2d_hwc2spchw;
convolution_op->compute.range[0] = batch_size;
convolution_op->compute.range[1] = output_height;
convolution_op->compute.tile[0] = output_height_slice;
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
case xnn_ukernel_type_dwconv:
{
xnn_update_f32_spchw_params((union xnn_f32_spchw_params*) params, input_width);
convolution_op->context.dwconv2d = (struct dwconv2d_context) {
.output_height = output_height,
.input_width = input_width,
.input = input,
.input_channel_stride = input_height * input_width << log2_input_element_size,
.input_batch_stride = input_batch_stride << log2_input_element_size,
.packed_weights = convolution_op->packed_weights,
.weights_channel_stride = bias_element_size +
(convolution_op->kernel_height * convolution_op->kernel_width << log2_filter_element_size),
.output = output,
.output_channel_stride = output_height * output_width << log2_output_element_size,
.output_batch_stride = output_batch_stride << log2_output_element_size,
.input_tuple_stride = convolution_op->ukernel.dwconv2d.input_width_tile << log2_input_element_size,
.output_tuple_stride = convolution_op->ukernel.dwconv2d.output_width_tile << log2_output_element_size,
.input_pixel_stride = input_width << log2_input_element_size,
.output_pixel_stride = output_width << log2_output_element_size,
.spchw_ukernel = convolution_op->ukernel.dwconv2d.spchw_function,
};
memcpy(&convolution_op->context.dwconv2d.params, params, sizeof(convolution_op->context.dwconv2d.params));
convolution_op->compute.type = xnn_parallelization_type_2d;
convolution_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_dwconv2d_spchw;
convolution_op->compute.range[0] = batch_size;
convolution_op->compute.range[1] = groups;
convolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
default:
XNN_UNREACHABLE;
}
}
enum xnn_status xnn_setup_convolution2d_nchw_f32(
xnn_operator_t convolution_op,
size_t batch_size,
size_t input_batch_stride,
size_t output_batch_stride,
size_t input_height,
size_t input_width,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (convolution_op->type != xnn_operator_type_convolution_nchw_f32) {
xnn_log_error("failed to setup Convolution (NCHW, F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
return setup_convolution2d_nchw(
convolution_op,
batch_size, input_batch_stride, output_batch_stride,
input_height, input_width,
input, output,
2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
sizeof(float) /* sizeof(bias element) */,
2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
&convolution_op->f32_output_params,
pthreadpool_get_threads_count(threadpool));
}