blob: 65c50c6cc2077d1f652666589349425864c1d973 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 4 == 0
$assert BATCH_TILE >= 4
$assert RR_STEPS in [1, 2]
$assert DIV_ALGO in ["div", "nr2fma", "nr2recps", "nr1recps1fma"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
void xnn_f32_sigmoid_ukernel__${"neonfma" if FMA else "neon"}_rr${RR_STEPS}_p5_${DIV_ALGO}_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const void* params)
{
assert(n % sizeof(float) == 0);
const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
// The largest z for which sigmoidf(-z) is normalized.
// This number is also the largest z for which expf(-z) is normalized.
const float32x4_t vdenorm_cutoff = vmovq_n_f32(0x1.5D589Ep+6f);
const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
$if RR_STEPS == 1:
const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
$else:
$if FMA:
const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f);
const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f);
$else:
// Last 7 bits are zeroes
const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E400p-1f);
const float32x4_t vln2_lo = vmovq_n_f32(0x1.7F7D1Cp-20f);
const float32x4_t vone = vmovq_n_f32(1.0f);
const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
$if BATCH_TILE > 4:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[z] if x >= 0.
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vz${ABC[N:N+4]} = vabsq_f32(vx${ABC[N:N+4]});
// Compute reduced argument n := round(-z / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
// inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
$for N in range(0, BATCH_TILE, 4):
float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 23));
// Subtract the large number back to get final n := round(-z / log(2)).
$for N in range(0, BATCH_TILE, 4):
vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
// Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
$if RR_STEPS == 1:
$for N in range(0, BATCH_TILE, 4):
float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2);
$else:
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(0, BATCH_TILE, 4):
float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_hi);
$for N in range(0, BATCH_TILE, 4):
vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_lo);
// Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
$for N in range(0, BATCH_TILE, 4):
float32x4_t vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc4, vc5, vt${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc3, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc2, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc1, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
$for N in range(0, BATCH_TILE, 4):
vt${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
float32x4_t ve${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
// Denominator of the sigmoid fraction: 1.0 + exp(-z)
$for N in range(0, BATCH_TILE, 4):
float32x4_t vd${ABC[N:N+4]} = vaddq_f32(ve${ABC[N:N+4]}, vone);
$if DIV_ALGO == "div":
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
$for N in range(0, BATCH_TILE, 4):
float32x4_t vf${ABC[N:N+4]} = vdivq_f32(ve${ABC[N:N+4]}, vd${ABC[N:N+4]});
$else:
// Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
$for N in range(0, BATCH_TILE, 4):
float32x4_t vr${ABC[N:N+4]} = vrecpeq_f32(vd${ABC[N:N+4]});
$if DIV_ALGO == "nr2fma":
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$else:
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$if DIV_ALGO == "nr2recps":
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$else:
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
$for N in range(0, BATCH_TILE, 4):
float32x4_t vf${ABC[N:N+4]} = vmulq_f32(ve${ABC[N:N+4]}, vr${ABC[N:N+4]});
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(0, BATCH_TILE, 4):
vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcagtq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
$for N in range(0, BATCH_TILE, 4):
const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f));
$for N in range(0, BATCH_TILE, 4):
vf${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, vf${ABC[N:N+4]}, vsubq_f32(vone, vf${ABC[N:N+4]}));
$for N in range(0, BATCH_TILE, 4):
vst1q_f32(y, vf${ABC[N:N+4]}); y += 4;
}
for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
const float32x4_t vx = vld1q_f32(x); x += 4;
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[z] if x <= 0.
const float32x4_t vz = vabsq_f32(vx);
// Compute reduced argument n := round(-z / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
// inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
// Subtract the large number back to get final n := round(-z / log(2)).
vn = vsubq_f32(vn, vmagic_bias);
// Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
$if RR_STEPS == 1:
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2);
$else:
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi);
vt = ${VMULADDQ_F32}(vt, vn, vln2_lo);
// Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt);
vp = ${VMULADDQ_F32}(vc3, vp, vt);
vp = ${VMULADDQ_F32}(vc2, vp, vt);
vp = ${VMULADDQ_F32}(vc1, vp, vt);
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = vmulq_f32(vt, vs);
float32x4_t ve = ${VMULADDQ_F32}(vs, vp, vt);
// Denominator of the sigmoid fraction: 1.0 + exp(-z)
float32x4_t vd = vaddq_f32(ve, vone);
$if DIV_ALGO == "div":
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float32x4_t vf = vdivq_f32(ve, vd);
$else:
// Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
float32x4_t vr = vrecpeq_f32(vd);
$if DIV_ALGO == "nr2fma":
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
$else:
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$if DIV_ALGO == "nr2recps":
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$else:
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float32x4_t vf = vmulq_f32(ve, vr);
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
vst1q_f32(y, vf); y += 4;
}
if XNN_UNLIKELY(n != 0) {
const float32x4_t vx = vld1q_f32(x);
// General structure of the algorithm:
// / exp(x) / (1 + exp(x)) if x <= 0
// f[x] :=
// \ 1 - f[-x] if x >= 0
//
// First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
// then replace result with 1 - f[z] if x <= 0.
const float32x4_t vz = vabsq_f32(vx);
// Compute reduced argument n := round(-z / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
// large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
// inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
// anyway. We fixup the result for such inputs at the very end of the algorithm.
float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e);
// Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
// -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
// Subtract the large number back to get final n := round(-z / log(2)).
vn = vsubq_f32(vn, vmagic_bias);
// Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
$if RR_STEPS == 1:
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2);
$else:
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi);
vt = ${VMULADDQ_F32}(vt, vn, vln2_lo);
// Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt);
vp = ${VMULADDQ_F32}(vc3, vp, vt);
vp = ${VMULADDQ_F32}(vc2, vp, vt);
vp = ${VMULADDQ_F32}(vc1, vp, vt);
// Reconstruct the exp(-z) value:
// e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = vmulq_f32(vt, vs);
float32x4_t ve = ${VMULADDQ_F32}(vs, vp, vt);
// Denominator of the sigmoid fraction: 1.0 + exp(-z)
float32x4_t vd = vaddq_f32(ve, vone);
$if DIV_ALGO == "div":
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float32x4_t vf = vdivq_f32(ve, vd);
$else:
// Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
// Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
// Thus the reciprocal of the denominator never overflows.
float32x4_t vr = vrecpeq_f32(vd);
$if DIV_ALGO == "nr2fma":
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
$else:
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$if DIV_ALGO == "nr2recps":
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$else:
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
// Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
float32x4_t vf = vmulq_f32(ve, vr);
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
// Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
float32x2_t vf_lo = vget_low_f32(vf);
if (n & (2 * sizeof(float))) {
vst1_f32(y, vf_lo); y += 2;
vf_lo = vget_high_f32(vf);
}
if (n & (1 * sizeof(float))) {
vst1_lane_f32(y, vf_lo, 0);
}
}
}