blob: 14f5dca0127a688b76e8ba22d97265a4c8360f44 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE % 8 == 0
$assert ELEMENTS_TILE >= 8
$SIMD_TILE = ELEMENTS_TILE // 8
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/vscaleextexp.h>
static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
void xnn_f32_vscaleextexp_ukernel__avx2_p5_x${ELEMENTS_TILE}(
size_t elements,
const float* x,
float* y,
float scale_value,
float scale_exp)
{
assert(elements % sizeof(float) == 0);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
// The smallest elements such that 2**elements is considered non-negligible.
// For smaller elements, 2**elements is replaced with zero.
const __m256 vmin_exponent = _mm256_set1_ps(-127.0f);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
const __m256 vc0 = _mm256_set1_ps(1.0f);
const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
const __m256 vscalev = _mm256_set1_ps(scale_value);
const __m256 vscalee = _mm256_set1_ps(scale_exp);
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
// Load ${ELEMENTS_TILE} (${SIMD_TILE}x8) inputs at a time.
const __m256 vx0 = _mm256_loadu_ps(x);
$for N in range(1, SIMD_TILE):
const __m256 vx${N} = _mm256_loadu_ps(x + ${N * 8});
x += ${ELEMENTS_TILE};
// Compute reduced argument elements := round(x / log(2)).
$for N in range(SIMD_TILE):
const __m256 vn${N} = _mm256_round_ps(_mm256_mul_ps(vx${N}, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(SIMD_TILE):
__m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_hi, vx${N});
$for N in range(SIMD_TILE):
vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2_lo, vt${N});
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
$for N in range(SIMD_TILE):
__m256 vp${N} = _mm256_fmadd_ps(vc5, vt${N}, vc4);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc1);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation where
// - vnX is "exponent"
// - vpX is "mantissa"
//
// exp2(ae) * av * exp2(be) * bv =
// = exp2(ae + be) * (av * bv)
$for N in range(SIMD_TILE):
__m256 vf${N} = _mm256_mul_ps(vp${N}, vscalev);
$for N in range(SIMD_TILE):
__m256 ve${N} = _mm256_add_ps(vn${N}, vscalee);
// For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
// This replacement is done in two steps:
// 1. Clamp minimum e at -127.0.
// 2. Map e to scale factor 0.0 when e == -127.0
$for N in range(SIMD_TILE):
ve${N} = _mm256_max_ps(ve${N}, vmin_exponent);
// Convert exponents into scale factors:
// - s = exp2(e) when e > -127.0
// - s = 0.0 when e <= -127.0
$for N in range(SIMD_TILE):
const __m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve${N}, vmagic_bias)), 23));
// Multiply "mantissa" by the scale factor.
$for N in range(SIMD_TILE):
vf${N} = _mm256_mul_ps(vf${N}, vs${N});
// Store ${ELEMENTS_TILE} (${SIMD_TILE}x8) outputs at a time.
_mm256_storeu_ps(y, vf0);
$for N in range(1, SIMD_TILE):
_mm256_storeu_ps(y + ${N * 8}, vf${N});
y += ${ELEMENTS_TILE};
}
for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
// Load 8 inputs at a time.
const __m256 vx = _mm256_loadu_ps(x);
x += 8;
// Compute reduced argument elements := round(x / log(2)).
const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
vp = _mm256_fmadd_ps(vp, vt, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
__m256 vf = _mm256_mul_ps(vp, vscalev);
__m256 ve = _mm256_add_ps(vn, vscalee);
// For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
ve = _mm256_max_ps(ve, vmin_exponent);
// Convert exponents into scale factors.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
// Multiply "mantissa" by the scale factor.
vf = _mm256_mul_ps(vf, vs);
// Store 8 results at a time.
_mm256_storeu_ps(y, vf);
y += 8;
}
if XNN_UNLIKELY(elements != 0) {
assert(elements >= 1 * sizeof(float));
assert(elements <= 7 * sizeof(float));
const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
// Load up to 7 inputs at a time.
const __m256 vx = _mm256_maskload_ps(x, vmask);
// Compute reduced argument elements := round(x / log(2)).
const __m256 vn = _mm256_round_ps(_mm256_mul_ps(vx, vlog2e), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_fmadd_ps(vp, vt, vc1);
vp = _mm256_fmadd_ps(vp, vt, vc0);
// Multiply "extended" floating-point numbers in ("mantissa", "exponent") representation.
__m256 vf = _mm256_mul_ps(vp, vscalev);
__m256 ve = _mm256_add_ps(vn, vscalee);
// For computational efficiency, replace exp2(e) with 0.0f when e <= -127.0.
ve = _mm256_max_ps(ve, vmin_exponent);
// Convert exponents into scale factors.
const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(_mm256_add_ps(ve, vmagic_bias)), 23));
// Multiply "mantissa" by the scale factor.
vf = _mm256_mul_ps(vf, vs);
// Store up to 7 inputs at a time.
_mm256_maskstore_ps(y, vmask, vf);
}
_mm256_zeroupper();
}