blob: 2f5a792dde9f7204411fb946bcdc9cec3c1ca9ae [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stdint.h>
#include <stddef.h>
#include <arm_neon.h>
#include <xnnpack/requantization-stubs.h>
void xnn_qu8_requantize_fp32__neon(
size_t n,
const int32_t* input,
float scale,
uint8_t zero_point,
uint8_t qmin,
uint8_t qmax,
uint8_t* output)
{
assert(n % 16 == 0);
assert(scale < 1.0f);
assert(scale >= 0x1.0p-32f);
const float32x4_t vscale = vdupq_n_f32(scale);
#ifdef __aarch64__
const int16x8_t vzero_point = vdupq_n_s16((int16_t)(uint16_t) zero_point);
const uint8x16_t vqmin = vdupq_n_u8(qmin);
const uint8x16_t vqmax = vdupq_n_u8(qmax);
#else
const float32x4_t vfmin = vdupq_n_f32((float) ((int32_t)(uint32_t) qmin - (int32_t)(uint32_t) zero_point));
const float32x4_t vfmax = vdupq_n_f32((float) ((int32_t)(uint32_t) qmax - (int32_t)(uint32_t) zero_point));
const float32x4_t vfmagic = vdupq_n_f32(12582912.0f);
const int32x4_t vimagic = vdupq_n_s32(INT32_C(0x4B400000) - (int32_t)(uint32_t) zero_point);
#endif
for (; n != 0; n -= 16) {
const int32x4_t x = vld1q_s32(input);
const int32x4_t y = vld1q_s32(input + 4);
const int32x4_t z = vld1q_s32(input + 8);
const int32x4_t w = vld1q_s32(input + 12);
input += 16;
// Convert int32_t input to FP32 and multiply by FP32 scale.
// Both operations involve statistically unbiased roundings:
// - Large int32_t values can't be exactly represented as FP32. The conversion instruction in ARM NEON would
// round it to nearest FP32 value with ties to even.
// - Product of two FP32 values is generally not exactly representation as an FP32 value, and will be rounded
// to nearest FP32 value with ties to even.
const float32x4_t x_scaled = vmulq_f32(vcvtq_f32_s32(x), vscale);
const float32x4_t y_scaled = vmulq_f32(vcvtq_f32_s32(y), vscale);
const float32x4_t z_scaled = vmulq_f32(vcvtq_f32_s32(z), vscale);
const float32x4_t w_scaled = vmulq_f32(vcvtq_f32_s32(w), vscale);
#ifdef __aarch64__
// Leverage "Floating-point Convert to Signed integer, rouding to nearest with ties to even" instruction.
// This is an ARMv8 instruction (always available in AArch64), which saturates result on overflow.
// We don't need to specifically consider saturated results, they will be clamped at the last stage.
const int32x4_t x_rounded = vcvtnq_s32_f32(x_scaled);
const int32x4_t y_rounded = vcvtnq_s32_f32(y_scaled);
const int32x4_t z_rounded = vcvtnq_s32_f32(z_scaled);
const int32x4_t w_rounded = vcvtnq_s32_f32(w_scaled);
// Standard final sequence on ARM NEON:
// - Pack to int16_t and saturate
// - Add zero point
// - Pack to uint8_t and saturate
// - Clamp between qmin and qmax
const int16x8_t xy_packed = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(x_rounded), y_rounded), vzero_point);
const int16x8_t zw_packed = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(z_rounded), w_rounded), vzero_point);
const uint8x16_t xyzw_packed = vqmovun_high_s16(vqmovun_s16(xy_packed), zw_packed);
const uint8x16_t xyzw_clamped = vmaxq_u8(vminq_u8(xyzw_packed, vqmax), vqmin);
vst1q_u8(output, xyzw_clamped);
output += 16;
#else
// ARMv7 NEON offers only a floating-point to integer conversion instruction with rounding towards zero.
// In lieu of conversion instruction with rounding-to-nearest-even, we use a magic trick of adding a large
// number (1.5 * 2**23) to scaled value to cause rounding to integer, and then substracing this magic number as
// integer. This trick works only in a limited range (absolute value of input must be less than 2**22), so
// generally we have to clamp input to this range before using the magic. However, clamping to any smaller range
// works just as well, and thus we clamp to [qmin - zero point, qmax - zero point] range so that after we add
// zero point to the result, it gets into target [qmin, qmax] range.
const float32x4_t x_clamped = vminq_f32(vmaxq_f32(x_scaled, vfmin), vfmax);
const float32x4_t y_clamped = vminq_f32(vmaxq_f32(y_scaled, vfmin), vfmax);
const float32x4_t z_clamped = vminq_f32(vmaxq_f32(z_scaled, vfmin), vfmax);
const float32x4_t w_clamped = vminq_f32(vmaxq_f32(w_scaled, vfmin), vfmax);
// Conversion to integer using the "magic trick". Rounding is performed in the output of addition operation,
// and result is rounded to nearest even integer with ties to even.
const int32x4_t x_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(x_clamped, vfmagic)), vimagic);
const int32x4_t y_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(y_clamped, vfmagic)), vimagic);
const int32x4_t z_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(z_clamped, vfmagic)), vimagic);
const int32x4_t w_biased = vsubq_s32(vreinterpretq_s32_f32(vaddq_f32(w_clamped, vfmagic)), vimagic);
// Select low 8 bits of each 32-bit integer in the vectors for the output.
// Since result is already clamped to [qmin, qmax] subrange of [0, 255], saturation is not needed.
const int16x8_t xy_packed = vcombine_s16(vmovn_s32(x_biased), vmovn_s32(y_biased));
const int16x8_t zw_packed = vcombine_s16(vmovn_s32(z_biased), vmovn_s32(w_biased));
const uint8x16_t xyzw_packed = vreinterpretq_u8_s8(vcombine_s8(vmovn_s16(xy_packed), vmovn_s16(zw_packed)));
// AArch32 version:
// 4x VCVT.F32.S32 Qd, Qm
// 4x VMUL.F32 Qd, Qm, Qn
// 4x VMIN.F32 Qd, Qm, Qn
// 4x VMAX.F32 Qd, Qm, Qn
// 4x VADD.F32 Qd, Qm, Qn
// 4x VSUB.S32 Qd, Qm, Qn
// 4x VMOVN.I32 Dd, Qm
// 2x VMOVN.I16 Dd, Qm
// ---------------------
// 30 instructions total
//
// AArch64 version:
// 4x SCVTF Vd.4S, Vn.4S
// 4x FMUL Vd.4S, Vn.4S, Vm.4S
// 4x FCVTNS Vd.4S, Vn.4S
// 2x SQXTN Vd.4H, Vn.4S
// 2x SQXTN2 Vd.8H, Vn.4S
// 2x ADD Vd.8H, Vn.8H, Vm.8H
// 1x SQXTUN Vd.8B, Vn.8H
// 1x SQXTUN2 Vd.16B, Vn.8H
// 1x UMIN Vd.16B, Vn.16B, Vm.16B
// 1x UMAX Vd.16B, Vn.16B, Vm.16B
// ---------------------
// 22 instructions total
vst1q_u8(output, xyzw_packed);
output += 16;
#endif
}
}