blob: 888f1c68afda63e6118df82833a6d261798a02a0 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE % 4 == 0
$assert ELEMENTS_TILE >= 4
$SIMD_TILE = ELEMENTS_TILE // 4
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/common.h>
#include <xnnpack/raddstoreexpminusmax.h>
extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
$PARAMS_STRUCT = "neonfma_rr1_lut64_p2" if FMA else "neon_rr2_lut64_p2"
void xnn_f32_raddstoreexpminusmax_ukernel__${"neonfma" if FMA else "neon"}_rr${1 if FMA else 2}_lut64_p2_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t elements,
const float* input,
const float* max,
float* output,
float* sum,
const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(elements % sizeof(float) == 0);
const float32x4_t vi_max = vld1q_dup_f32(max);
const float32x4_t vlog2e = vld1q_dup_f32(&params->${PARAMS_STRUCT}.log2e);
const float32x4_t vmagic_bias = vld1q_dup_f32(&params->${PARAMS_STRUCT}.magic_bias);
const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
$if FMA:
const float32x4_t vminus_ln2 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2);
$else:
const float32x4_t vminus_ln2_hi = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2_hi);
const float32x4_t vminus_ln2_lo = vld1q_dup_f32(&params->${PARAMS_STRUCT}.minus_ln2_lo);
const float32x4_t vc2 = vld1q_dup_f32(&params->${PARAMS_STRUCT}.c2);
const float32x4_t vdenorm_cutoff = vld1q_dup_f32(&params->${PARAMS_STRUCT}.denorm_cutoff);
$if ELEMENTS_TILE > 4:
$for K in range(ACCUMULATORS):
float32x4_t vacc${K} = vmovq_n_f32(0.0f);
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
$for N in range(0, ELEMENTS_TILE, 4):
const float32x4_t vi${ABC[N:N+4]} = vld1q_f32(input); input += 4;
$for N in range(0, ELEMENTS_TILE, 4):
const float32x4_t vx${ABC[N:N+4]} = vsubq_f32(vi${ABC[N:N+4]}, vi_max);
$for N in range(0, ELEMENTS_TILE, 4):
float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vx${ABC[N:N+4]}, vlog2e);
$for N in range(0, ELEMENTS_TILE, 4):
const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vmovq_n_s32(INT32_C(0x3F))), 17);
$for N in range(0, ELEMENTS_TILE, 4):
const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask));
const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0);
const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1);
$for N in range(0, ELEMENTS_TILE, 4):
float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N:N+2]}]);
float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx${ABC[N+2:N+4]}]);
$for N in range(0, ELEMENTS_TILE, 4):
vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1);
vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1);
const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]}));
$for N in range(0, ELEMENTS_TILE, 4):
vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
$if FMA:
$for N in range(0, ELEMENTS_TILE, 4):
float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2);
$else:
$for N in range(0, ELEMENTS_TILE, 4):
float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi);
$for N in range(0, ELEMENTS_TILE, 4):
vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo);
$for N in range(0, ELEMENTS_TILE, 4):
float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc2);
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
float32x4_t vf${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcltq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
$for N in range(0, ELEMENTS_TILE, 4):
vst1q_f32(output, vf${ABC[N:N+4]}); output += 4;
$for N in range(0, ELEMENTS_TILE, 4):
vacc${N % ACCUMULATORS} = vaddq_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
}
$if ACCUMULATORS > 1:
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A} = vaddq_f32(vacc${A}, vacc${A + ACC_SLICE});
$ACC_SLICE *= 2
float32x4_t vacc = vacc0;
$else:
float32x4_t vacc = vmovq_n_f32(0.0f);
for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
const float32x4_t vi = vld1q_f32(input); input += 4;
const float32x4_t vx = vsubq_f32(vi, vi_max);
float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
vn = vsubq_f32(vn, vmagic_bias);
$if FMA:
float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2);
$else:
float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
float32x4_t vp = vmulq_f32(vt, vc2);
vp = ${VMULADDQ_F32}(vt, vt, vp);
float32x4_t vf = ${VMULADDQ_F32}(vs, vs, vp);
vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
vst1q_f32(output, vf); output += 4;
vacc = vaddq_f32(vacc, vf);
}
#if XNN_ARCH_ARM64
float vacc_lo = vaddvq_f32(vacc);
#else
float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
#endif
if (elements != 0) {
assert(elements >= 1 * sizeof(float));
assert(elements <= 3 * sizeof(float));
const float32x4_t vi = vld1q_f32(input); input += 4;
const float32x4_t vx = vsubq_f32(vi, vi_max);
float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
vn = vsubq_f32(vn, vmagic_bias);
$if FMA:
float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2);
$else:
float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
float32x4_t vp = vmulq_f32(vt, vc2);
vp = ${VMULADDQ_F32}(vt, vt, vp);
float32x4_t vf = ${VMULADDQ_F32}(vs, vs, vp);
vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
float32x2_t vf_lo = vget_low_f32(vf);
if (elements & (2 * sizeof(float))) {
vst1_f32(output, vf_lo); output += 2;
#if XNN_ARCH_ARM64
vacc_lo += vaddv_f32(vf_lo);
#else
vacc_lo = vadd_f32(vacc_lo, vf_lo);
#endif
vf_lo = vget_high_f32(vf);
}
if (elements & (1 * sizeof(float))) {
vst1_lane_f32(output, vf_lo, 0);
#if XNN_ARCH_ARM64
vacc_lo += vget_lane_f32(vf_lo, 0);
#else
vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
#endif
}
}
#if XNN_ARCH_ARM64
*sum = vacc_lo;
#else
vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
#endif
}