blob: 996bee9c84a6a51da0986dc49e70326bd66c4249 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE % 4 == 0
$assert ELEMENTS_TILE >= 4
$SIMD_TILE = ELEMENTS_TILE // 4
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <emmintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/raddstoreexpminusmax.h>
void xnn_f32_raddstoreexpminusmax_ukernel__sse2_rr2_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t elements,
const float* input,
const float* max,
float* output,
float* sum,
const union xnn_f32_expminus_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(elements % sizeof(float) == 0);
const __m128 vi_max = _mm_load1_ps(max);
const __m128 vlog2e = _mm_load_ps(params->sse2_rr2_p5.log2e);
const __m128 vmagic_bias = _mm_load_ps(params->sse2_rr2_p5.magic_bias);
const __m128 vminus_ln2_hi = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_hi);
const __m128 vminus_ln2_lo = _mm_load_ps(params->sse2_rr2_p5.minus_ln2_lo);
const __m128 vc5 = _mm_load_ps(params->sse2_rr2_p5.c5);
const __m128 vc4 = _mm_load_ps(params->sse2_rr2_p5.c4);
const __m128 vc3 = _mm_load_ps(params->sse2_rr2_p5.c3);
const __m128 vc2 = _mm_load_ps(params->sse2_rr2_p5.c2);
const __m128 vc1 = _mm_load_ps(params->sse2_rr2_p5.c1);
const __m128 vdenorm_cutoff = _mm_load_ps(params->sse2_rr2_p5.denorm_cutoff);
$for K in range(ACCUMULATORS):
__m128 vacc${K} = _mm_setzero_ps();
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
// Load ${ELEMENTS_TILE} (${SIMD_TILE}x4) inputs at a time.
const __m128 vi${ABC[0:4]} = _mm_loadu_ps(input);
$for N in range(4, ELEMENTS_TILE, 4):
const __m128 vi${ABC[N:N+4]} = _mm_loadu_ps(input + ${N});
input += ${ELEMENTS_TILE};
// Subtract maximum input x := i - i_max. This implies x <= 0.
$for N in range(0, ELEMENTS_TILE, 4):
const __m128 vx${ABC[N:N+4]} = _mm_sub_ps(vi${ABC[N:N+4]}, vi_max);
// Compute reduced argument elements := round(x / log(2)).
$for N in range(0, ELEMENTS_TILE, 4):
__m128 vn${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vx${ABC[N:N+4]}, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
$for N in range(0, ELEMENTS_TILE, 4):
const __m128 vs${ABC[N:N+4]} = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn${ABC[N:N+4]}), 23));
// Subtract the large number back to get final elements := round(x / log(2)).
$for N in range(0, ELEMENTS_TILE, 4):
vn${ABC[N:N+4]} = _mm_sub_ps(vn${ABC[N:N+4]}, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(0, ELEMENTS_TILE, 4):
__m128 vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_hi), vx${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
vt${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vn${ABC[N:N+4]}, vminus_ln2_lo), vt${ABC[N:N+4]});
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
$for N in range(0, ELEMENTS_TILE, 4):
__m128 vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vc5, vt${ABC[N:N+4]}), vc4);
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc3);
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc2);
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vp${ABC[N:N+4]}, vt${ABC[N:N+4]}), vc1);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
$for N in range(0, ELEMENTS_TILE, 4):
vt${ABC[N:N+4]} = _mm_mul_ps(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
__m128 vf${ABC[N:N+4]} = _mm_add_ps(_mm_mul_ps(vt${ABC[N:N+4]}, vp${ABC[N:N+4]}), vs${ABC[N:N+4]});
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(0, ELEMENTS_TILE, 4):
vf${ABC[N:N+4]} = _mm_andnot_ps(_mm_cmplt_ps(vx${ABC[N:N+4]}, vdenorm_cutoff), vf${ABC[N:N+4]});
// Store ${ELEMENTS_TILE} (${SIMD_TILE}x4) outputs at a time.
_mm_storeu_ps(output, vf${ABC[0:4]});
$for N in range(4, ELEMENTS_TILE, 4):
_mm_storeu_ps(output + ${N}, vf${ABC[N:N+4]});
output += ${ELEMENTS_TILE};
// Accumulate computed exponents.
$for N in range(0, ELEMENTS_TILE, 4):
vacc${N % ACCUMULATORS} = _mm_add_ps(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
}
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A} = _mm_add_ps(vacc${A}, vacc${A + ACC_SLICE});
$ACC_SLICE *= 2
__m128 vacc = vacc0;
for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
// Load 4 inputs at a time.
const __m128 vi = _mm_loadu_ps(input);
input += 4;
// Subtract maximum input x := i - i_max. This implies x <= 0.
const __m128 vx = _mm_sub_ps(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
__m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
// Subtract the large number back to get final elements := round(x / log(2)).
vn = _mm_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = _mm_mul_ps(vt, vs);
__m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
// Store 4 outputs at a time.
_mm_storeu_ps(output, vf);
output += 4;
// Accumulate computed exponents.
vacc = _mm_add_ps(vacc, vf);
}
if (elements != 0) {
assert(elements >= 1 * sizeof(float));
assert(elements <= 3 * sizeof(float));
// Load 4 inputs at a time.
const __m128 vi = _mm_loadu_ps(input);
// Subtract maximum input x := i - i_max. This implies x <= 0.
const __m128 vx = _mm_sub_ps(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
__m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
// Subtract the large number back to get final elements := round(x / log(2)).
vn = _mm_sub_ps(vn, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
// Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
__m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = _mm_mul_ps(vt, vs);
__m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
if (elements & (2 * sizeof(float))) {
// Store 2 outputs at a time.
_mm_storel_pi((__m64*) output, vf);
output += 2;
// Accumulate 2 computed exponents.
vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
vf = _mm_movehl_ps(vf, vf);
}
if (elements & (1 * sizeof(float))) {
// Store 1 output at a time.
_mm_store_ss(output, vf);
// Accumulate 1 computed exponent.
vacc = _mm_add_ss(vacc, vf);
}
}
// Reduce 4 elements in the SIMD register
vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
_mm_store_ss(sum, vacc);
}