blob: aff84dc6cb216146dd7c4e89e2a643475bcf05cb [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stdint.h>
#include <stddef.h>
#include <wasm_simd128.h>
#include <xnnpack/requantization-stubs.h>
void xnn_qu8_requantize_fp32__wasmsimd(
size_t n,
const int32_t* input,
float scale,
uint8_t zero_point,
uint8_t qmin,
uint8_t qmax,
uint8_t* output)
{
assert(n % 16 == 0);
assert(scale < 1.0f);
assert(scale >= 0x1.0p-32f);
const v128_t vscale = wasm_f32x4_splat(scale);
const v128_t vfmin = wasm_f32x4_splat((float) ((int32_t) (uint32_t) qmin - (int32_t) (uint32_t) zero_point));
const v128_t vfmax = wasm_f32x4_splat((float) ((int32_t) (uint32_t) qmax - (int32_t) (uint32_t) zero_point));
const v128_t vfmagic = wasm_f32x4_const_splat(12582912.0f);
const v128_t vimagic = wasm_i32x4_splat(INT32_C(0x4B400000) - (int32_t) (uint32_t) zero_point);
for (; n != 0; n -= 16) {
const v128_t x = wasm_v128_load(input);
const v128_t y = wasm_v128_load(input + 4);
const v128_t z = wasm_v128_load(input + 8);
const v128_t w = wasm_v128_load(input + 12);
input += 16;
// Convert int32_t input to FP32 and multiply by FP32 scale.
// Both operations involve statistically unbiased roundings:
// - Large int32_t values can't be exactly represented as FP32. The conversion instruction in WAsm SIMD would
// round it to nearest FP32 value with ties to even.
// - Product of two FP32 values is generally not exactly representation as an FP32 value, and will be rounded
// to nearest FP32 value with ties to even.
const v128_t x_scaled = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(x), vscale);
const v128_t y_scaled = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(y), vscale);
const v128_t z_scaled = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(z), vscale);
const v128_t w_scaled = wasm_f32x4_mul(wasm_f32x4_convert_i32x4(w), vscale);
// WAsm SIMD offers only a floating-point to integer conversion instruction with rounding towards zero.
// In lieu of conversion instruction with rounding-to-nearest-even, we use a magic trick of adding a large
// number (1.5 * 2**23) to scaled value to cause rounding to integer, and then substracing this magic number as
// integer. This trick works only in a limited range (absolute value of input must be less than 2**22), so
// generally we have to clamp input to this range before using the magic. However, clamping to any smaller range
// works just as well, and thus we clamp to [qmin - zero point, qmax - zero point] range so that after we add
// zero point to the result, it gets into target [qmin, qmax] range.
const v128_t x_clamped = wasm_f32x4_min(wasm_f32x4_max(x_scaled, vfmin), vfmax);
const v128_t y_clamped = wasm_f32x4_min(wasm_f32x4_max(y_scaled, vfmin), vfmax);
const v128_t z_clamped = wasm_f32x4_min(wasm_f32x4_max(z_scaled, vfmin), vfmax);
const v128_t w_clamped = wasm_f32x4_min(wasm_f32x4_max(w_scaled, vfmin), vfmax);
// Conversion to integer using the "magic trick". Rounding is performed in the output of addition operation,
// and result is rounded to nearest even integer with ties to even.
const v128_t x_biased = wasm_i32x4_sub(wasm_f32x4_add(x_clamped, vfmagic), vimagic);
const v128_t y_biased = wasm_i32x4_sub(wasm_f32x4_add(y_clamped, vfmagic), vimagic);
const v128_t z_biased = wasm_i32x4_sub(wasm_f32x4_add(z_clamped, vfmagic), vimagic);
const v128_t w_biased = wasm_i32x4_sub(wasm_f32x4_add(w_clamped, vfmagic), vimagic);
// Select low 8 bits of each 32-bit integer in the vectors for the output.
// Since result is already clamped to [qmin, qmax] subrange of [0, 255], saturation is not needed.
const v128_t xy_packed = wasm_v16x8_shuffle(x_biased, y_biased, 0, 2, 4, 6, 8, 10, 12, 14);
const v128_t zw_packed = wasm_v16x8_shuffle(z_biased, w_biased, 0, 2, 4, 6, 8, 10, 12, 14);
const v128_t xyzw_packed = wasm_v8x16_shuffle(xy_packed, zw_packed, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30);
// 4x f32x4.convert_i32x4_s
// 4x f32x4.mul
// 4x f32x4.max
// 4x f32x4.min
// 4x f32x4.add
// 4x i32x4.sub
// 3x v8x16.shuffle
// ---------------------
// 29 instructions total
wasm_v128_store(output, xyzw_packed);
output += 16;
}
}