blob: f98612cccd6e5c9da8f933bddf65a18b78de3046 [file] [log] [blame]
#include "gemm-microkernel-tester.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <limits>
#include <numeric>
#include <random>
#include <vector>
#include <fp16.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
#include <xnnpack/requantization.h>
void GemmMicrokernelTester::Test(
xnn_qu8_gemm_minmax_ukernel_function gemm,
xnn_init_qu8_conv_minmax_params_fn init_params,
xnn_qu8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto u8rng = std::bind(
std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<uint8_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> b(n() * k());
std::vector<int32_t> bias(n());
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> packed_w(packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(uint8_t));
std::vector<uint8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<uint8_t> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(u8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(u8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), b_zero_point());
const xnn_qu8_packing_params packing_params = { a_zero_point(), b_zero_point() };
xnn_pack_qu8_gemm_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0, &packing_params);
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
acc[m_index * n() + n_index] +=
(int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point())) *
(int32_t(b[n_index * k() + k_index]) - int32_t(b_zero_point()));
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const uint8_t c_zero_point = uint8_t(std::max(std::min(
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qu8_conv_minmax_params quantization_params;
init_params(&quantization_params,
b_zero_point(), requantization_scale, c_zero_point, qmin(), qmax());
gemm(
m(), n(), k(),
a.data(), a_stride() * sizeof(uint8_t),
packed_w.data(),
c.data(), cm_stride() * sizeof(uint8_t), cn_stride() * sizeof(uint8_t),
&quantization_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], requantization_scale, c_zero_point, qmin(), qmax());
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmax()));
ASSERT_GE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmin()));
ASSERT_EQ(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << (uint32_t) c_ref[i * n() + j]
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_qu8_igemm_minmax_ukernel_function igemm,
xnn_init_qu8_conv_minmax_params_fn init_params,
xnn_qu8_requantize_fn requantize)
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto u8rng = std::bind(
std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng));
std::vector<uint8_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<uint8_t> b(n() * ks() * k());
std::vector<uint8_t, AlignedAllocator<uint8_t, 64>> packed_w(ks() * packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(uint8_t));
std::vector<int32_t> bias(n());
std::vector<uint8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<uint8_t> c_ref(m() * n());
std::vector<uint8_t> junk(k() + 8);
std::vector<const uint8_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), 0xA5);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(u8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(u8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), b_zero_point());
const xnn_qu8_packing_params packing_params = { a_zero_point(), b_zero_point() };
xnn_pack_qu8_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, &packing_params);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
if (im2col[ks_index * mr() + m_index] == a.data()) {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index]) - int32_t(a_zero_point())) *
(int32_t(b[(n_index * ks() + ks_index) * k() + k_index]) - int32_t(b_zero_point()));
} else {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index + a_offset()]) - int32_t(a_zero_point())) *
(int32_t(b[(n_index * ks() + ks_index) * k() + k_index]) - int32_t(b_zero_point()));
}
}
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const uint8_t c_zero_point = uint8_t(std::max(std::min(
lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qu8_conv_minmax_params quantization_params;
init_params(&quantization_params,
b_zero_point(), requantization_scale, c_zero_point, qmin(), qmax());
const uint8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm(
m(), n(), k(), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(uint8_t), cn_stride() * sizeof(uint8_t),
a_offset() * sizeof(uint8_t), zero_pointer,
&quantization_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], requantization_scale, c_zero_point, qmin(), qmax());
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmax()));
ASSERT_GE(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(qmin()));
ASSERT_EQ(uint32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), uint32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_qc8_gemm_minmax_ukernel_function gemm,
xnn_init_qs8_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(int8_t));
std::vector<int8_t> b(n() * k());
std::vector<int32_t> bias(n());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(packed_n() * packed_k() + packed_n() * (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t));
std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_xw(packed_n() * packed_k() + packed_n() * (sizeof(int32_t) + sizeof(float)) / sizeof(int16_t));
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<float> scale(n());
std::vector<int8_t> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
if (extended_weights()) {
xnn_pack_qs8_gemm_xw_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_xw.data(), nr() * sizeof(float), &packing_params);
} else {
xnn_pack_qs8_gemm_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nr() * sizeof(float), &packing_params);
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
acc[m_index * n() + n_index] +=
(int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[n_index * k() + k_index]);
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int8_t c_zero_point = -1;
for (size_t n_index = 0; n_index < n(); n_index++) {
int32_t accumulated_min = acc[n_index];
int32_t accumulated_max = acc[n_index];
for (size_t m_index = 0; m_index < m(); m_index++) {
accumulated_min = std::min(accumulated_min, acc[m_index * n() + n_index]);
accumulated_max = std::max(accumulated_max, acc[m_index * n() + n_index]);
}
const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min);
const float c_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
scale[n_index] = 1.0f / c_scale;
}
if (extended_weights()) {
xnn_init_qc8_scale_fp32_params(
n(), nr(),
nr() * (packed_k() * sizeof(int16_t) + (sizeof(int32_t) + sizeof(float))), scale.data(),
(void*) ((uintptr_t) packed_xw.data() + nr() * (packed_k() * sizeof(int16_t) + sizeof(int32_t))));
} else {
xnn_init_qc8_scale_fp32_params(
n(), nr(),
nr() * (packed_k() * sizeof(int8_t) + (sizeof(int32_t) + sizeof(float))), scale.data(),
(void*) ((uintptr_t) packed_w.data() + nr() * (packed_k() * sizeof(int8_t) + sizeof(int32_t))));
}
union xnn_qs8_minmax_params minmax_params;
init_params(&minmax_params,
c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
gemm(
m(), n(), k(),
a.data(), a_stride() * sizeof(int8_t),
extended_weights() ? static_cast<const void*>(packed_xw.data()) : static_cast<const void*>(packed_w.data()),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
&minmax_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], scale[n_index], c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << int32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << scale[j] << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_qc8_igemm_minmax_ukernel_function igemm,
xnn_init_qs8_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<int8_t> b(n() * ks() * k());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(ks() * packed_n() * packed_k() + packed_n() * (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t));
std::vector<int32_t> bias(n());
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<float> scale(n());
std::vector<int8_t> c_ref(m() * n());
std::vector<int8_t> junk(k() + 8);
std::vector<const int8_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), 0xA5);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
xnn_pack_qs8_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nr() * sizeof(float), &packing_params);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
if (im2col[ks_index * mr() + m_index] == a.data()) {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index + a_offset()]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int8_t c_zero_point = -1;
for (size_t n_index = 0; n_index < n(); n_index++) {
int32_t accumulated_min = acc[n_index];
int32_t accumulated_max = acc[n_index];
for (size_t m_index = 0; m_index < m(); m_index++) {
accumulated_min = std::min(accumulated_min, acc[m_index * n() + n_index]);
accumulated_max = std::max(accumulated_max, acc[m_index * n() + n_index]);
}
const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min);
const float c_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
scale[n_index] = 1.0f / c_scale;
}
xnn_init_qc8_scale_fp32_params(
n(), nr(),
nr() * (ks() * packed_k() * sizeof(int8_t) + (sizeof(int32_t) + sizeof(float))), scale.data(),
(void*) ((uintptr_t) packed_w.data() + nr() * (ks() * packed_k() * sizeof(int8_t) + sizeof(int32_t))));
union xnn_qs8_minmax_params minmax_params;
init_params(&minmax_params,
c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
const int8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm(
m(), n(), k(), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
a_offset() * sizeof(uint8_t), zero_pointer,
&minmax_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], scale[n_index], c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << scale[j] << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_qs8_gemm_minmax_ukernel_function gemm,
xnn_init_qs8_conv_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(int8_t));
std::vector<int8_t> b(n() * k());
std::vector<int32_t> bias(n());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(int8_t));
std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_xw(packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(int16_t));
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<int8_t> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
if (extended_weights()) {
xnn_pack_qs8_gemm_xw_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_xw.data(), 0, &packing_params);
} else {
xnn_pack_qs8_gemm_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0, &packing_params);
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
acc[m_index * n() + n_index] +=
(int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[n_index * k() + k_index]);
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const int8_t c_zero_point = int8_t(std::max(std::min(
lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qs8_conv_minmax_params quantization_params;
init_params(&quantization_params,
requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
gemm(
m(), n(), k(),
a.data(), a_stride() * sizeof(int8_t),
extended_weights() ? static_cast<const void*>(packed_xw.data()) : static_cast<const void*>(packed_w.data()),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
&quantization_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << int32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_qs8_igemm_minmax_ukernel_function igemm,
xnn_init_qs8_conv_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<int8_t> b(n() * ks() * k());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(ks() * packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(int8_t));
std::vector<int32_t> bias(n());
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<int8_t> c_ref(m() * n());
std::vector<int8_t> junk(k() + 8);
std::vector<const int8_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), 0xA5);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
xnn_pack_qs8_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, &packing_params);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
if (im2col[ks_index * mr() + m_index] == a.data()) {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index + a_offset()]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const uint8_t c_zero_point = uint8_t(std::max(std::min(
lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qs8_conv_minmax_params quantization_params;
init_params(&quantization_params,
requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
const int8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm(
m(), n(), k(), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
a_offset() * sizeof(uint8_t), zero_pointer,
&quantization_params);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f16_gemm_minmax_ukernel_function gemm_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const
{
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> b(n() * k());
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(packed_n() * packed_k() + packed_n());
std::vector<uint16_t> bias(n());
std::vector<uint16_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f16rng));
std::generate(b.begin(), b.end(), std::ref(f16rng));
std::generate(bias.begin(), bias.end(), std::ref(f16rng));
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0);
xnn_pack_f16_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), 0, nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
ASSERT_LT(m_index * k() + k_index, a.size());
c_ref[m_index * n() + n_index] +=
fp16_ieee_to_fp32_value(a[m_index * a_stride() + k_index]) *
fp16_ieee_to_fp32_value(b[n_index * k() + k_index]);
}
c_ref[m_index * n() + n_index] += fp16_ieee_to_fp32_value(bias[n_index]);
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin())));
const float c_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax())));
// Prepare parameters.
xnn_f16_scaleminmax_params params;
init_params(&params,
UINT16_C(0x3C00) /* 1.0 */,
fp16_ieee_from_fp32_value(c_min),
fp16_ieee_from_fp32_value(c_max));
for (float& c_value : c_ref) {
c_value = std::max(std::min(c_value, c_max), c_min);
}
gemm_minmax(m(), n(), k() * sizeof(uint16_t),
a.data(), a_stride() * sizeof(uint16_t),
packed_w.data(),
c.data(), cm_stride() * sizeof(uint16_t), cn_stride() * sizeof(uint16_t),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_ref[i * n() + j], std::max(1.0e-4f, std::abs(c_ref[i * n() + j]) * 1.0e-2f))
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f16_igemm_minmax_ukernel_function igemm_minmax, xnn_init_f16_scaleminmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
auto f16rng = std::bind(fp16_ieee_from_fp32_value, f32rng);
std::vector<uint16_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<uint16_t> b(n() * ks() * k());
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> packed_w(ks() * packed_k() * packed_n() + packed_n());
std::vector<uint16_t> bias(n());
std::vector<uint16_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<uint16_t> junk(k() + XNN_EXTRA_BYTES / sizeof(uint16_t));
std::vector<const uint16_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), UINT16_C(0x7E00) /* NaN */);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f16rng));
std::generate(b.begin(), b.end(), std::ref(f16rng));
std::generate(bias.begin(), bias.end(), std::ref(f16rng));
std::fill(c.begin(), c.end(), UINT16_C(0x7E00) /* NaN */);
std::fill(c_ref.begin(), c_ref.end(), 0);
std::fill(packed_w.begin(), packed_w.end(), 0);
xnn_pack_f16_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
fp16_ieee_to_fp32_value(im2col[ks_index * mr() + m_index][k_index]) *
fp16_ieee_to_fp32_value(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
fp16_ieee_to_fp32_value(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
fp16_ieee_to_fp32_value(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += fp16_ieee_to_fp32_value(bias[n_index]);
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_min + (accumulated_max - accumulated_min) / 255.0f * uint16_t(qmin())));
const float c_max = fp16_ieee_to_fp32_value(fp16_ieee_from_fp32_value(accumulated_max - (accumulated_max - accumulated_min) / 255.0f * uint16_t(255 - qmax())));
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::min(c_ref[m_index * n() + n_index], c_max);
c_ref[m_index * n() + n_index] = std::max(c_ref[m_index * n() + n_index], c_min);
}
}
// Prepare parameters.
xnn_f16_scaleminmax_params params;
init_params(&params,
UINT16_C(0x3C00) /* 1.0 */,
fp16_ieee_from_fp32_value(c_min),
fp16_ieee_from_fp32_value(c_max));
for (float& c_value : c_ref) {
c_value = std::max(std::min(c_value, c_max), c_min);
}
const uint16_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm_minmax(
m(), n(), k() * sizeof(uint16_t), ks() * mr() * sizeof(void*),
reinterpret_cast<const void**>(im2col.data()), packed_w.data(),
c.data(), cm_stride() * sizeof(uint16_t), cn_stride() * sizeof(uint16_t),
a_offset() * sizeof(uint16_t), zero_pointer,
&params);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_max)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_GE(fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_min)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), c_ref[i * n() + j], std::max(1.0e-4f, std::abs(c_ref[i * n() + j]) * 1.0e-2f))
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << fp16_ieee_to_fp32_value(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_ppmm_minmax_ukernel_function ppmm_minmax, xnn_init_f32_minmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a(packed_k() * mr());
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + packed_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), 0, nullptr);
for (size_t i = m(); i < mr(); i++) {
for (size_t l = 0; l < k(); l++) {
a[l * mr() + i] = a[l * mr() + m() - 1];
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
for (size_t l = 0; l < k(); l++) {
c_ref[i * n() + j] +=
a[l * mr() + i] *
b[j * k() + l];
}
c_ref[i * n() + j] += bias[j];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, c_min, c_max);
for (float& c_value : c_ref) {
c_value = std::max(std::min(c_value, c_max), c_min);
}
ppmm_minmax(m(), n(), k() * sizeof(float),
a.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_gemm_ukernel_function gemm) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + packed_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), 0, nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
gemm(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
nullptr);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_gemm_relu_ukernel_function gemm_relu) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + packed_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), 0, nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] = std::max(0.0f, c_ref[m_index * n() + n_index] + bias[n_index]);
}
}
gemm_relu(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
nullptr);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], 0.0f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_gemm_minmax_ukernel_function gemm_minmax, xnn_init_f32_minmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + packed_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), 0, nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min =
qmin() == std::numeric_limits<uint8_t>::min() ? -std::numeric_limits<float>::infinity()
: accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max =
qmax() == std::numeric_limits<uint8_t>::max() ? +std::numeric_limits<float>::infinity()
: accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, c_min, c_max);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min);
}
}
gemm_minmax(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_gemminc_minmax_ukernel_function gemminc, xnn_init_f32_minmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k()); // no packed_n()
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float, AlignedAllocator<float, 64>> acc(mr() * packed_n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::generate(acc.begin(), acc.end(), std::ref(f32rng));
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemminc_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), packed_w.data(), nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += acc[n_index / nr() * nr() * mr() + m_index % mr() * nr() + n_index % nr()];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, c_min, c_max);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min);
}
}
gemminc(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
acc.data(),
&params);
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_igemm_ukernel_function igemm) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + packed_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
nullptr);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_igemm_relu_ukernel_function igemm_relu) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + packed_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] = std::max(0.0f, bias[n_index] + c_ref[m_index * n() + n_index]);
}
}
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm_relu(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
nullptr);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], 0.0f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_f32_igemm_minmax_ukernel_function igemm_minmax, xnn_init_f32_minmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + packed_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::min(c_ref[m_index * n() + n_index], c_max);
c_ref[m_index * n() + n_index] = std::max(c_ref[m_index * n() + n_index], c_min);
}
}
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, c_min, c_max);
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
igemm_minmax(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
&params);
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
#if XNN_PLATFORM_JIT
void GemmMicrokernelTester::Test(xnn_jit_gemm_code_generator_function gemm_generator, xnn_init_f32_minmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
ASSERT_GE(a_stride(), k());
ASSERT_GE(cm_stride(), n());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * k());
std::vector<float> bias(n());
std::vector<float, AlignedAllocator<float, 64>> packed_w(packed_n() * packed_k() + packed_n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1, n(), k(), nr(), kr(), sr(), b.data(), bias.data(), packed_w.data(), 0, nullptr);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LE(n(), packed_n());
ASSERT_LT(m_index * n() + n_index, c_ref.size());
c_ref[m_index * n() + n_index] +=
a[m_index * a_stride() + k_index] *
b[n_index * k() + k_index];
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min =
qmin() == std::numeric_limits<uint8_t>::min() ? -std::numeric_limits<float>::infinity()
: accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max =
qmax() == std::numeric_limits<uint8_t>::max() ? +std::numeric_limits<float>::infinity()
: accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, c_min, c_max);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::max(std::min(c_ref[m_index * n() + n_index], c_max), c_min);
}
}
struct xnn_code_buffer code_buffer;
ASSERT_EQ(xnn_status_success, xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE));
jit_gemm_params p = (jit_gemm_params) {
.f32_minmax = {
.min = c_min,
.max = c_max
}
};
ASSERT_EQ(xnn_status_success, gemm_generator(&code_buffer, n(), k() * sizeof(float), &p));
xnn_f32_gemm_minmax_ukernel_function gemm_minmax = reinterpret_cast<xnn_f32_gemm_minmax_ukernel_function>(code_buffer.code);
gemm_minmax(m(), n(), k() * sizeof(float),
a.data(), a_stride() * sizeof(float),
packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
&params);
ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&code_buffer));
// Validate micro-kernel outputs.
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << j << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k();
}
}
}
}
void GemmMicrokernelTester::Test(xnn_jit_igemm_code_generator_function igemm_generator, xnn_init_f32_minmax_params_fn init_params) const {
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
std::vector<float> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<float> b(n() * ks() * k());
std::vector<float, AlignedAllocator<float, 64>> packed_w(ks() * packed_k() * packed_n() + packed_n());
std::vector<float> bias(n());
std::vector<float> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<float> c_ref(m() * n());
std::vector<float> junk(k() + XNN_EXTRA_BYTES / sizeof(float));
std::vector<const float*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), nanf(""));
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::generate(bias.begin(), bias.end(), std::ref(f32rng));
std::fill(c.begin(), c.end(), nanf(""));
std::fill(c_ref.begin(), c_ref.end(), 0.0f);
std::fill(packed_w.begin(), packed_w.end(), 0.0f);
xnn_pack_f32_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, nullptr);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
std::fill(c_ref.begin(), c_ref.end(), 0.0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
ASSERT_LT(ks_index * mr() + m_index, im2col.size());
ASSERT_LT(k_index, k());
ASSERT_LT(k_index, a_stride());
if (im2col[ks_index * mr() + m_index] == a.data()) {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
c_ref[m_index * n() + n_index] +=
(im2col[ks_index * mr() + m_index][k_index + a_offset()]) *
(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
c_ref[m_index * n() + n_index] += bias[n_index];
}
}
const float accumulated_min = *std::min_element(c_ref.cbegin(), c_ref.cend());
const float accumulated_max = *std::max_element(c_ref.cbegin(), c_ref.cend());
const float c_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
const float c_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = std::min(c_ref[m_index * n() + n_index], c_max);
c_ref[m_index * n() + n_index] = std::max(c_ref[m_index * n() + n_index], c_min);
}
}
// Prepare parameters.
xnn_f32_minmax_params params;
init_params(&params, c_min, c_max);
const float* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
struct xnn_code_buffer code_buffer;
ASSERT_EQ(xnn_status_success, xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE));
jit_gemm_params p = (jit_gemm_params) {
.f32_minmax = {
.min = c_min,
.max = c_max
}
};
ASSERT_EQ(xnn_status_success, igemm_generator(&code_buffer,n(), k() * sizeof(float), ks() * mr() * sizeof(void*), &p));
xnn_f32_igemm_minmax_ukernel_function igemm_minmax = reinterpret_cast<xnn_f32_igemm_minmax_ukernel_function>(code_buffer.code);
igemm_minmax(
m(), n(), k() * sizeof(float), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(float), cn_stride() * sizeof(float),
a_offset() * sizeof(float), zero_pointer,
&params);
ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&code_buffer));
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_max)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_GE(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()], c_min)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
ASSERT_NEAR(
c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()],
c_ref[i * n() + j],
std::abs(c_ref[i * n() + j]) * 1.0e-6f)
<< "at " << i << ", " << i << ": reference = " << c_ref[i * n() + j]
<< ", optimized = " << c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x " << nr()
<< " x " << kr() << ", M x N x KC x KS = " << m() << " x " << n() << " x " << k() << " x " << ks();
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_jit_gemm_code_generator_function gemm_generator,
xnn_init_qs8_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(int8_t));
std::vector<int8_t> b(n() * k());
std::vector<int32_t> bias(n());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(packed_n() * packed_k() + packed_n() * (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t));
std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_xw(packed_n() * packed_k() + packed_n() * (sizeof(int32_t) + sizeof(float)) / sizeof(int16_t));
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<float> scale(n());
std::vector<int8_t> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
if (extended_weights()) {
xnn_pack_qs8_gemm_xw_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_xw.data(), nr() * sizeof(float), &packing_params);
} else {
xnn_pack_qs8_gemm_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nr() * sizeof(float), &packing_params);
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
acc[m_index * n() + n_index] +=
(int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[n_index * k() + k_index]);
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int8_t c_zero_point = -1;
for (size_t n_index = 0; n_index < n(); n_index++) {
int32_t accumulated_min = acc[n_index];
int32_t accumulated_max = acc[n_index];
for (size_t m_index = 0; m_index < m(); m_index++) {
accumulated_min = std::min(accumulated_min, acc[m_index * n() + n_index]);
accumulated_max = std::max(accumulated_max, acc[m_index * n() + n_index]);
}
const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min);
const float c_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
scale[n_index] = 1.0f / c_scale;
}
if (extended_weights()) {
xnn_init_qc8_scale_fp32_params(
n(), nr(),
nr() * (packed_k() * sizeof(int16_t) + (sizeof(int32_t) + sizeof(float))), scale.data(),
(void*) ((uintptr_t) packed_xw.data() + nr() * (packed_k() * sizeof(int16_t) + sizeof(int32_t))));
} else {
xnn_init_qc8_scale_fp32_params(
n(), nr(),
nr() * (packed_k() * sizeof(int8_t) + (sizeof(int32_t) + sizeof(float))), scale.data(),
(void*) ((uintptr_t) packed_w.data() + nr() * (packed_k() * sizeof(int8_t) + sizeof(int32_t))));
}
union xnn_qs8_minmax_params minmax_params;
init_params(&minmax_params,
c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
struct xnn_code_buffer code_buffer;
ASSERT_EQ(xnn_status_success, xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE));
ASSERT_EQ(xnn_status_success, gemm_generator(&code_buffer, n(), k(), nullptr));
xnn_qc8_gemm_minmax_ukernel_function gemm = reinterpret_cast<xnn_qc8_gemm_minmax_ukernel_function>(code_buffer.code);
gemm(
m(), n(), k(),
a.data(), a_stride() * sizeof(int8_t),
extended_weights() ? static_cast<const void*>(packed_xw.data()) : static_cast<const void*>(packed_w.data()),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
&minmax_params);
ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&code_buffer));
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], scale[n_index], c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << int32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << scale[j] << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_jit_igemm_code_generator_function igemm_generator,
xnn_init_qs8_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<int8_t> b(n() * ks() * k());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(ks() * packed_n() * packed_k() + packed_n() * (sizeof(int32_t) + sizeof(float)) / sizeof(int8_t));
std::vector<int32_t> bias(n());
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<float> scale(n());
std::vector<int8_t> c_ref(m() * n());
std::vector<int8_t> junk(k() + 8);
std::vector<const int8_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), 0xA5);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
xnn_pack_qs8_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), nr() * sizeof(float), &packing_params);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
if (im2col[ks_index * mr() + m_index] == a.data()) {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index + a_offset()]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int8_t c_zero_point = -1;
for (size_t n_index = 0; n_index < n(); n_index++) {
int32_t accumulated_min = acc[n_index];
int32_t accumulated_max = acc[n_index];
for (size_t m_index = 0; m_index < m(); m_index++) {
accumulated_min = std::min(accumulated_min, acc[m_index * n() + n_index]);
accumulated_max = std::max(accumulated_max, acc[m_index * n() + n_index]);
}
const uint32_t accumulated_range = uint32_t(accumulated_max - accumulated_min);
const float c_scale = accumulated_range >= 256 ? double(accumulated_range) / 255.0 : 1.00001;
scale[n_index] = 1.0f / c_scale;
}
xnn_init_qc8_scale_fp32_params(
n(), nr(),
nr() * (ks() * packed_k() * sizeof(int8_t) + (sizeof(int32_t) + sizeof(float))), scale.data(),
(void*) ((uintptr_t) packed_w.data() + nr() * (ks() * packed_k() * sizeof(int8_t) + sizeof(int32_t))));
union xnn_qs8_minmax_params minmax_params;
init_params(&minmax_params,
c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
const int8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
struct xnn_code_buffer code_buffer;
ASSERT_EQ(xnn_status_success, xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE));
ASSERT_EQ(xnn_status_success, igemm_generator(&code_buffer,n(), k(), ks() * mr() * sizeof(void*), nullptr));
xnn_qc8_igemm_minmax_ukernel_function igemm = reinterpret_cast<xnn_qc8_igemm_minmax_ukernel_function>(code_buffer.code);
igemm(
m(), n(), k(), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
a_offset() * sizeof(uint8_t), zero_pointer,
&minmax_params);
ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&code_buffer));
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], scale[n_index], c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << scale[j] << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_jit_gemm_code_generator_function gemm_generator,
xnn_init_qs8_conv_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((m() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(int8_t));
std::vector<int8_t> b(n() * k());
std::vector<int32_t> bias(n());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(int8_t));
std::vector<int16_t, AlignedAllocator<int16_t, 64>> packed_xw(packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(int16_t));
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<int8_t> c_ref(m() * n());
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
if (extended_weights()) {
xnn_pack_qs8_gemm_xw_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_xw.data(), 0, &packing_params);
} else {
xnn_pack_qs8_gemm_goi_w(1, n(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0, &packing_params);
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
acc[m_index * n() + n_index] +=
(int32_t(a[m_index * a_stride() + k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[n_index * k() + k_index]);
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const int8_t c_zero_point = int8_t(std::max(std::min(
lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qs8_conv_minmax_params quantization_params;
init_params(&quantization_params,
requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
struct xnn_code_buffer code_buffer;
ASSERT_EQ(xnn_status_success, xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE));
ASSERT_EQ(xnn_status_success, gemm_generator(&code_buffer,n(), k(), nullptr));
xnn_qs8_gemm_minmax_ukernel_function gemm = reinterpret_cast<xnn_qs8_gemm_minmax_ukernel_function >(code_buffer.code);
gemm(
m(), n(), k(),
a.data(), a_stride() * sizeof(int8_t),
extended_weights() ? static_cast<const void*>(packed_xw.data()) : static_cast<const void*>(packed_w.data()),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
&quantization_params);
ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&code_buffer));
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << int32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]) << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
void GemmMicrokernelTester::Test(
xnn_jit_igemm_code_generator_function igemm_generator,
xnn_init_qs8_conv_minmax_params_fn init_params,
xnn_qs8_requantize_fn requantize) const
{
ASSERT_LE(m(), mr());
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng));
auto i8rng = std::bind(
std::uniform_int_distribution<int32_t>(std::numeric_limits<int8_t>::min(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
auto w8rng = std::bind(
std::uniform_int_distribution<int32_t>(-std::numeric_limits<int8_t>::max(), std::numeric_limits<int8_t>::max()),
std::ref(rng));
std::vector<int8_t> a((mr() - 1) * a_stride() + k() + XNN_EXTRA_BYTES / sizeof(uint8_t));
std::vector<int8_t> b(n() * ks() * k());
std::vector<int8_t, AlignedAllocator<int8_t, 64>> packed_w(ks() * packed_n() * packed_k() + packed_n() * sizeof(int32_t) / sizeof(int8_t));
std::vector<int32_t> bias(n());
std::vector<int8_t> c((mr() - 1) * cm_stride() + ((n() - 1) / nr()) * cn_stride() + (n() - 1) % nr() + 1);
std::vector<int32_t> acc(m() * n());
std::vector<int8_t> c_ref(m() * n());
std::vector<int8_t> junk(k() + 8);
std::vector<const int8_t*> im2col(mr() * ks());
std::fill(junk.begin(), junk.end(), 0xA5);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
do {
std::generate(a.begin(), a.end(), std::ref(i8rng));
} while (a.size() > 1 && *std::max_element(a.cbegin(), a.cend()) == *std::min_element(a.cbegin(), a.cend()));
do {
std::generate(b.begin(), b.end(), std::ref(w8rng));
} while (b.size() > 1 && *std::max_element(b.cbegin(), b.cend()) == *std::min_element(b.cbegin(), b.cend()));
std::generate(bias.begin(), bias.end(), std::ref(i32rng));
std::fill(c.begin(), c.end(), 0xA5);
std::fill(packed_w.begin(), packed_w.end(), 0);
const xnn_qs8_packing_params packing_params = { int8_t(a_zero_point() - 0x80) };
xnn_pack_qs8_conv_goki_w(
1, n(), ks(), k(), nr(), kr(), sr(),
b.data(), bias.data(), packed_w.data(), 0 /* extra bytes */, &packing_params);
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = 0; m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = a.data() + a_stride() * m_index - a_offset();
}
}
std::shuffle(im2col.begin(), im2col.end(), rng);
if (zero_index() != SIZE_MAX) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
im2col[ks_index * mr() + zero_index()] = a.data();
}
}
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t m_index = m(); m_index < mr(); m_index++) {
im2col[ks_index * mr() + m_index] = junk.data();
}
}
// Compute 32-bit results and output quantization arguments.
std::fill(acc.begin(), acc.end(), 0);
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
for (size_t ks_index = 0; ks_index < ks(); ks_index++) {
for (size_t k_index = 0; k_index < k(); k_index++) {
if (im2col[ks_index * mr() + m_index] == a.data()) {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
} else {
acc[m_index * n() + n_index] +=
(int32_t(im2col[ks_index * mr() + m_index][k_index + a_offset()]) - int32_t(a_zero_point() - 0x80)) *
int32_t(b[(n_index * ks() + ks_index) * k() + k_index]);
}
}
}
acc[m_index * n() + n_index] += bias[n_index];
}
}
const int32_t accumulated_min = *std::min_element(acc.cbegin(), acc.cend());
const int32_t accumulated_max = *std::max_element(acc.cbegin(), acc.cend());
const double c_scale = uint32_t(accumulated_max - accumulated_min) >= 256 ? double(uint32_t(accumulated_max - accumulated_min)) / 255.0 : 1.00001;
const uint8_t c_zero_point = uint8_t(std::max(std::min(
lrint(-0.5 - 0.5 * double(accumulated_min + accumulated_max) / c_scale),
long(std::numeric_limits<int8_t>::max())), long(std::numeric_limits<int8_t>::min())));
const float requantization_scale = 1.0f / float(c_scale);
union xnn_qs8_conv_minmax_params quantization_params;
init_params(&quantization_params,
requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
const int8_t* zero_pointer = (zero_index() != SIZE_MAX) ? a.data() : NULL;
struct xnn_code_buffer code_buffer;
ASSERT_EQ(xnn_status_success, xnn_allocate_code_memory(&code_buffer, XNN_DEFAULT_CODE_BUFFER_SIZE));
ASSERT_EQ(xnn_status_success, igemm_generator(&code_buffer,n(), k(), ks() * mr() * sizeof(void*), nullptr));
xnn_qs8_igemm_minmax_ukernel_function igemm = reinterpret_cast<xnn_qs8_igemm_minmax_ukernel_function>(code_buffer.code);
igemm(
m(), n(), k(), ks() * mr() * sizeof(void*),
im2col.data(), packed_w.data(),
c.data(), cm_stride() * sizeof(int8_t), cn_stride() * sizeof(int8_t),
a_offset() * sizeof(uint8_t), zero_pointer,
&quantization_params);
ASSERT_EQ(xnn_status_success, xnn_release_code_memory(&code_buffer));
for (size_t m_index = 0; m_index < m(); m_index++) {
for (size_t n_index = 0; n_index < n(); n_index++) {
c_ref[m_index * n() + n_index] = requantize(
acc[m_index * n() + n_index], requantization_scale, c_zero_point, int8_t(qmin() - 0x80), int8_t(qmax() - 0x80));
}
}
for (size_t i = 0; i < m(); i++) {
for (size_t j = 0; j < n(); j++) {
ASSERT_LE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmax()) - 0x80);
ASSERT_GE(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(qmin()) - 0x80);
ASSERT_EQ(int32_t(c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()]), int32_t(c_ref[i * n() + j]))
<< "at " << i << ", " << j << ": reference = " << uint32_t(c_ref[i * n() + j])
<< " (accumulator = " << acc[i * n() + j]
<< "), optimized = " << (uint32_t) c[i * cm_stride() + (j / nr()) * cn_stride() + j % nr()] << ", Mr x Nr x Kr = " << mr() << " x "
<< nr() << " x " << kr() << ", M x N x K = " << m() << " x " << n() << " x " << k()
<< ", requantization scale = " << requantization_scale << ", output zero point = " << int32_t(c_zero_point);
}
}
}
}
#endif // XNN_PLATFORM_JIT