blob: c18530352a73f05ce44e634013752ed339b74abf [file] [log] [blame]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert PIXEL_TILE >= 1
$assert PIXEL_TILE % 4 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/ibilinear.h>
void xnn_f32_ibilinear_chw_ukernel__sse_p${PIXEL_TILE}(
size_t output_pixels,
size_t channels,
const float**restrict input,
size_t input_offset,
const float*restrict weights,
float*restrict output,
size_t input_increment) XNN_OOB_READS
{
assert(output_pixels != 0);
assert(channels != 0);
assert(input_increment % sizeof(float) == 0);
do {
const float** i = input;
const float* w = weights;
size_t p = output_pixels;
$if PIXEL_TILE > 4:
for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) {
$for P in range(PIXEL_TILE):
const float* itl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${ABC[P]} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 2 * ${PIXEL_TILE};
$for P in range(0, PIXEL_TILE, 4):
const __m128 vw${ABC[P:P+4]}p0 = _mm_loadu_ps(w + ${2 * P});
const __m128 vw${ABC[P:P+4]}p1 = _mm_loadu_ps(w + ${2 * P + 4});
w += 2 * ${PIXEL_TILE};
$for P in range(0, PIXEL_TILE, 2):
const __m128 vtltr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl${ABC[P]});
const __m128 vblbr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl${ABC[P]});
$for P in range(0, PIXEL_TILE, 4):
const __m128 valphah${ABC[P:P+4]} = _mm_shuffle_ps(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 valphav${ABC[P:P+4]} = _mm_shuffle_ps(vw${ABC[P:P+4]}p0, vw${ABC[P:P+4]}p1, _MM_SHUFFLE(3, 1, 3, 1));
$for P in range(0, PIXEL_TILE, 2):
const __m128 vtltr${ABC[P:P+2]} = _mm_loadh_pi(vtltr${ABC[P]}, (const __m64*) itl${ABC[P+1]});
const __m128 vblbr${ABC[P:P+2]} = _mm_loadh_pi(vblbr${ABC[P]}, (const __m64*) ibl${ABC[P+1]});
$for P in range(0, PIXEL_TILE, 2):
const __m128 vldrd${ABC[P:P+2]} = _mm_sub_ps(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]});
$for P in range(0, PIXEL_TILE, 4):
const __m128 vld${ABC[P:P+4]} = _mm_shuffle_ps(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vrd${ABC[P:P+4]} = _mm_shuffle_ps(vldrd${ABC[P:P+2]}, vldrd${ABC[P+2:P+4]}, _MM_SHUFFLE(3, 1, 3, 1));
$for P in range(0, PIXEL_TILE, 4):
const __m128 vtl${ABC[P:P+4]} = _mm_shuffle_ps(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vtr${ABC[P:P+4]} = _mm_shuffle_ps(vtltr${ABC[P:P+2]}, vtltr${ABC[P+2:P+4]}, _MM_SHUFFLE(3, 1, 3, 1));
$for P in range(0, PIXEL_TILE, 4):
const __m128 vl${ABC[P:P+4]} = _mm_add_ps(vtl${ABC[P:P+4]}, _mm_mul_ps(vld${ABC[P:P+4]}, valphav${ABC[P:P+4]}));
const __m128 vr${ABC[P:P+4]} = _mm_add_ps(vtr${ABC[P:P+4]}, _mm_mul_ps(vrd${ABC[P:P+4]}, valphav${ABC[P:P+4]}));
$for P in range(0, PIXEL_TILE, 4):
const __m128 vd${ABC[P:P+4]} = _mm_sub_ps(vr${ABC[P:P+4]}, vl${ABC[P:P+4]});
$for P in range(0, PIXEL_TILE, 4):
const __m128 vo${ABC[P:P+4]} = _mm_add_ps(vl${ABC[P:P+4]}, _mm_mul_ps(vd${ABC[P:P+4]}, valphah${ABC[P:P+4]}));
$for P in range(0, PIXEL_TILE, 4):
_mm_storeu_ps(output + ${P}, vo${ABC[P:P+4]});
output += ${PIXEL_TILE};
}
for (; p >= 4; p -= 4) {
$for P in range(4):
const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 8;
const __m128 vw0 = _mm_loadu_ps(w);
const __m128 vw1 = _mm_loadu_ps(w + 4);
w += 8;
$for P in range(0, 4, 2):
const __m128 vtltr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl${P});
const __m128 vblbr${ABC[P]} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl${P});
const __m128 valphah = _mm_shuffle_ps(vw0, vw1, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 valphav = _mm_shuffle_ps(vw0, vw1, _MM_SHUFFLE(3, 1, 3, 1));
$for P in range(0, 4, 2):
const __m128 vtltr${ABC[P:P+2]} = _mm_loadh_pi(vtltr${ABC[P]}, (const __m64*) itl${P+1});
const __m128 vblbr${ABC[P:P+2]} = _mm_loadh_pi(vblbr${ABC[P]}, (const __m64*) ibl${P+1});
$for P in range(0, 4, 2):
const __m128 vldrd${ABC[P:P+2]} = _mm_sub_ps(vblbr${ABC[P:P+2]}, vtltr${ABC[P:P+2]});
const __m128 vld = _mm_shuffle_ps(vldrd01, vldrd23, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vrd = _mm_shuffle_ps(vldrd01, vldrd23, _MM_SHUFFLE(3, 1, 3, 1));
const __m128 vtl = _mm_shuffle_ps(vtltr01, vtltr23, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vtr = _mm_shuffle_ps(vtltr01, vtltr23, _MM_SHUFFLE(3, 1, 3, 1));
const __m128 vl = _mm_add_ps(vtl, _mm_mul_ps(vld, valphav));
const __m128 vr = _mm_add_ps(vtr, _mm_mul_ps(vrd, valphav));
const __m128 vd = _mm_sub_ps(vr, vl);
const __m128 vo = _mm_add_ps(vl, _mm_mul_ps(vd, valphah));
_mm_storeu_ps(output, vo);
output += 4;
}
if XNN_UNLIKELY(p != 0) {
if (p & 2) {
const __m128 vw = _mm_loadu_ps(w);
w += 4;
const __m128 valphah = _mm_shuffle_ps(vw, vw, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 valphav = _mm_shuffle_ps(vw, vw, _MM_SHUFFLE(3, 1, 3, 1));
$for P in range(2):
const float* itl${P} = (const float*) ((uintptr_t) i[${2 * P}] + input_offset);
const float* ibl${P} = (const float*) ((uintptr_t) i[${2 * P + 1}] + input_offset);
i += 4;
const __m128 vtltr = _mm_loadh_pi(_mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl0), (const __m64*) itl1);
const __m128 vblbr = _mm_loadh_pi(_mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl0), (const __m64*) ibl1);
const __m128 vldrd = _mm_sub_ps(vblbr, vtltr);
const __m128 vld = _mm_shuffle_ps(vldrd, vldrd, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vrd = _mm_shuffle_ps(vldrd, vldrd, _MM_SHUFFLE(3, 1, 3, 1));
const __m128 vtl = _mm_shuffle_ps(vtltr, vtltr, _MM_SHUFFLE(2, 0, 2, 0));
const __m128 vtr = _mm_shuffle_ps(vtltr, vtltr, _MM_SHUFFLE(3, 1, 3, 1));
const __m128 vl = _mm_add_ps(vtl, _mm_mul_ps(vld, valphav));
const __m128 vr = _mm_add_ps(vtr, _mm_mul_ps(vrd, valphav));
const __m128 vd = _mm_sub_ps(vr, vl);
const __m128 vo = _mm_add_ps(vl, _mm_mul_ps(vd, valphah));
_mm_storel_pi((__m64*) output, vo);
output += 2;
}
if (p & 1) {
// We are computing the following formula:
// result = (1 - alpha_h) * (1 - alpha_v) * top_left +
// alpha_h * (1 - alpha_v) * top_right +
// (1 - alpha_h) * alpha_v * bottom_left +
// alpha_h * alpha_v * bottom_right.
//
// Rearranging gives
// result = left + alpha_h * (right - left),
// where
// left = top_left + alpha_v * (bottom_left - top_left),
// right = top_right + alpha_v * (bottom_right - top_right).
const float alphah = *w;
const __m128 valphav = _mm_load_ps1(w + 1);
w += 2;
const float* itl = (const float*) ((uintptr_t) i[0] + input_offset);
const float* ibl = (const float*) ((uintptr_t) i[1] + input_offset);
i += 2;
const __m128 vtltr = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) itl);
const __m128 vblbr = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) ibl);
// Compute at once
// left_diff = bottom_left - top_left
// right_diff = bottom_right - top_right
const __m128 vldrd = _mm_sub_ps(vblbr, vtltr);
const __m128 vlr = _mm_add_ps(vtltr, _mm_mul_ps(vldrd, valphav));
// Extract them and compute the result.
const float l = _mm_cvtss_f32(vlr);
const float r = _mm_cvtss_f32(_mm_shuffle_ps(vlr, vlr, 1));
*output++ = l + alphah * (r - l);
}
}
input_offset += input_increment;
} while (--channels != 0);
}