blob: 1e5d1f863ba2d908d5b96552277335739060739a [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <wasm_simd128.h>
#include <xnnpack/math-stubs.h>
void xnn_math_f32_expm1minus__wasmsimd_rr2_p6_andnot(
size_t n,
const float* input,
float* output)
{
assert(n % (4 * sizeof(float)) == 0);
// Large number such that ulp(magic bias) == 1 and magic bias === 127 mod 2**22.
const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
// The largest x for which expm1f(x) is saturated at -1.0f.
const v128_t vsat_cutoff = wasm_f32x4_splat(-0x1.154246p+4f);
// Last 5 bits are zeroes
const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E440p-1f);
const v128_t vminus_ln2_lo = wasm_f32x4_splat(0x1.0105C6p-21f);
// Coefficient of polynomial approximation
// exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))
// on [-log(2)/2, log(2)/2]
const v128_t vc6 = wasm_f32x4_splat(0x1.6b7338p-10f);
const v128_t vc5 = wasm_f32x4_splat(0x1.12278Ep-7f);
const v128_t vc4 = wasm_f32x4_splat(0x1.555716p-5f);
const v128_t vc3 = wasm_f32x4_splat(0x1.5554B0p-3f);
const v128_t vc2 = wasm_f32x4_splat(0x1.FFFFFEp-2f);
const v128_t vone = wasm_f32x4_splat(1.0f);
for (; n != 0; n -= 4 * sizeof(float)) {
v128_t vx = wasm_v128_load(input);
// Compute reduced argument n := round(x / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
// the large number back. The trick with adding large number is valid only within certain bounds
// (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x are
// restricted to [-17.328680, 0].
// Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
v128_t vn = wasm_f32x4_add(wasm_f32x4_mul(vx, vlog2e), vmagic_bias);
// Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e.
// -17.328680 <= x <= 0.0, and -25 <= n <= 0 accordingly.
// For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input
// NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus
// input payload would be propagated in all computations.
v128_t vs = wasm_i32x4_shl(vn, 23);
// Subtract the large number back to get final n := round(x / log(2)).
vn = wasm_f32x4_sub(vn, vmagic_bias);
// Compute reduced argument t := x - n * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
v128_t vt = wasm_f32x4_add(wasm_f32x4_mul(vn, vminus_ln2_hi), vx);
vt = wasm_f32x4_add(wasm_f32x4_mul(vn, vminus_ln2_lo), vt);
// The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
// To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff.
const v128_t vm = wasm_f32x4_le(vx, vsat_cutoff);
vs = wasm_v128_andnot(vs, vm);
vt = wasm_v128_andnot(vt, vm);
// Compute degree-6 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2].
// P(t) = t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))
// = t + t * (t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6))))) = t + t * p
v128_t vp = wasm_f32x4_add(wasm_f32x4_mul(vc6, vt), vc5);
vp = wasm_f32x4_add(wasm_f32x4_mul(vp, vt), vc4);
vp = wasm_f32x4_add(wasm_f32x4_mul(vp, vt), vc3);
vp = wasm_f32x4_add(wasm_f32x4_mul(vp, vt), vc2);
vp = wasm_f32x4_mul(vp, vt);
// Reconstruct the exp(x) - 1 value:
// exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * (c4 + t * (c5 + t * c6)))))) - 1
// = (s - 1) + s * (t + t * p)
// = ((t * s) + (t * s) * p) + (s - 1)
vt = wasm_f32x4_mul(vt, vs);
const v128_t vsm1 = wasm_f32x4_sub(vs, vone);
vp = wasm_f32x4_add(wasm_f32x4_mul(vp, vt), vt);
const v128_t vf = wasm_f32x4_add(vp, vsm1);
wasm_v128_store(output, vf);
input += 4;
output += 4;
}
}