blob: 7cba9910e22d9ffc2781fccb19006fab82bdf7d9 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE % 4 == 0
$assert ELEMENTS_TILE >= 4
$SIMD_TILE = ELEMENTS_TILE // 4
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <psimd.h>
#include <xnnpack/common.h>
#include <xnnpack/raddstoreexpminusmax.h>
void xnn_f32_raddstoreexpminusmax_ukernel__psimd_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t elements,
const float* input,
float* output,
float* sum,
float max)
{
assert(elements % sizeof(float) == 0);
const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
// The smallest x for which expf(x) is normalized.
const psimd_f32 vdenorm_cutoff = psimd_splat_f32(-0x1.5D589Ep6f);
const psimd_f32 vlog2e = psimd_splat_f32(0x1.715476p+0f);
// Last 7 bits are zeroes
const psimd_f32 vminus_ln2_hi = psimd_splat_f32(-0x1.62E400p-1f);
const psimd_f32 vminus_ln2_lo = psimd_splat_f32(-0x1.7F7D1Cp-20f);
const psimd_f32 vc1 = psimd_splat_f32(0x1.FFFFF6p-1f);
const psimd_f32 vc2 = psimd_splat_f32(0x1.FFFDC6p-2f);
const psimd_f32 vc3 = psimd_splat_f32(0x1.555A80p-3f);
const psimd_f32 vc4 = psimd_splat_f32(0x1.573A1Ap-5f);
const psimd_f32 vc5 = psimd_splat_f32(0x1.0F9F9Cp-7f);
const psimd_f32 vi_max = psimd_splat_f32(max);
$for K in range(ACCUMULATORS):
psimd_f32 vacc${K} = psimd_zero_f32();
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
// Load ${ELEMENTS_TILE} (${SIMD_TILE}x4) inputs at a time.
const psimd_f32 vi${ABC[0:4]} = psimd_load_f32(input);
$for N in range(4, ELEMENTS_TILE, 4):
const psimd_f32 vi${ABC[N:N+4]} = psimd_load_f32(input + ${N});
input += ${ELEMENTS_TILE};
// Subtract maximum input x := i - i_max. This implies x <= 0.
$for N in range(0, ELEMENTS_TILE, 4):
const psimd_f32 vx${ABC[N:N+4]} = psimd_sub_f32(vi${ABC[N:N+4]}, vi_max);
// Compute reduced argument elements := round(x / log(2)).
$for N in range(0, ELEMENTS_TILE, 4):
psimd_f32 vn${ABC[N:N+4]} = psimd_qfma_f32(vmagic_bias, vx${ABC[N:N+4]}, vlog2e);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
$for N in range(0, ELEMENTS_TILE, 4):
const psimd_f32 vs${ABC[N:N+4]} = (psimd_f32) ((psimd_u32) vn${ABC[N:N+4]} << 23);
// Subtract the large number back to get final elements := round(x / log(2)).
$for N in range(0, ELEMENTS_TILE, 4):
vn${ABC[N:N+4]} = psimd_sub_f32(vn${ABC[N:N+4]}, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
$for N in range(0, ELEMENTS_TILE, 4):
psimd_f32 vt${ABC[N:N+4]} = psimd_qfma_f32(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi);
$for N in range(0, ELEMENTS_TILE, 4):
vt${ABC[N:N+4]} = psimd_qfma_f32(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
$for N in range(0, ELEMENTS_TILE, 4):
psimd_f32 vp${ABC[N:N+4]} = psimd_qfma_f32(vc4, vc5, vt${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = psimd_qfma_f32(vc3, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = psimd_qfma_f32(vc2, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
vp${ABC[N:N+4]} = psimd_qfma_f32(vc1, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
$for N in range(0, ELEMENTS_TILE, 4):
vt${ABC[N:N+4]} = psimd_mul_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
$for N in range(0, ELEMENTS_TILE, 4):
psimd_f32 vf${ABC[N:N+4]} = psimd_qfma_f32(vs${ABC[N:N+4]}, vt${ABC[N:N+4]}, vp${ABC[N:N+4]});
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(0, ELEMENTS_TILE, 4):
vf${ABC[N:N+4]} = psimd_andnotmask_f32(vx${ABC[N:N+4]} < vdenorm_cutoff, vf${ABC[N:N+4]});
// Store ${ELEMENTS_TILE} (${SIMD_TILE}x4) outputs at a time.
psimd_store_f32(output, vf${ABC[0:4]});
$for N in range(4, ELEMENTS_TILE, 4):
psimd_store_f32(output + ${N}, vf${ABC[N:N+4]});
output += ${ELEMENTS_TILE};
// Accumulate computed exponents.
$for N in range(0, ELEMENTS_TILE, 4):
vacc${N % ACCUMULATORS} = psimd_add_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
}
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A} = psimd_add_f32(vacc${A}, vacc${A + ACC_SLICE});
$ACC_SLICE *= 2
psimd_f32 vacc = vacc0;
for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
// Load 4 inputs at a time.
const psimd_f32 vi = psimd_load_f32(input);
input += 4;
// Subtract maximum input x := i - i_max. This implies x <= 0.
const psimd_f32 vx = psimd_sub_f32(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vx, vlog2e);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
// Subtract the large number back to get final elements := round(x / log(2)).
vn = psimd_sub_f32(vn, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
psimd_f32 vt = psimd_qfma_f32(vx, vn, vminus_ln2_hi);
vt = psimd_qfma_f32(vt, vn, vminus_ln2_lo);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
psimd_f32 vp = psimd_qfma_f32(vc4, vc5, vt);
vp = psimd_qfma_f32(vc3, vp, vt);
vp = psimd_qfma_f32(vc2, vp, vt);
vp = psimd_qfma_f32(vc1, vp, vt);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = psimd_mul_f32(vt, vs);
psimd_f32 vf = psimd_qfma_f32(vs, vt, vp);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = psimd_andnotmask_f32(vx < vdenorm_cutoff, vf);
// Store 4 outputs at a time.
psimd_store_f32(output, vf);
output += 4;
// Accumulate computed exponents.
vacc = psimd_add_f32(vacc, vf);
}
if (elements != 0) {
assert(elements >= 1 * sizeof(float));
assert(elements <= 3 * sizeof(float));
// Load 4 inputs at a time.
const psimd_f32 vi = psimd_load_f32(input);
// Subtract maximum input x := i - i_max. This implies x <= 0.
const psimd_f32 vx = psimd_sub_f32(vi, vi_max);
// Compute reduced argument elements := round(x / log(2)).
psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vx, vlog2e);
// Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
// -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
// Subtract the large number back to get final elements := round(x / log(2)).
vn = psimd_sub_f32(vn, vmagic_bias);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
psimd_f32 vt = psimd_qfma_f32(vx, vn, vminus_ln2_hi);
vt = psimd_qfma_f32(vt, vn, vminus_ln2_lo);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
psimd_f32 vp = psimd_qfma_f32(vc4, vc5, vt);
vp = psimd_qfma_f32(vc3, vp, vt);
vp = psimd_qfma_f32(vc2, vp, vt);
vp = psimd_qfma_f32(vc1, vp, vt);
// Reconstruct the final f value:
// f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
// = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
// = s + (t * s) * p
vt = psimd_mul_f32(vt, vs);
psimd_f32 vf = psimd_qfma_f32(vs, vt, vp);
// For inputs below zero cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
vf = psimd_andnotmask_f32(vx < vdenorm_cutoff, vf);
if (elements & (2 * sizeof(float))) {
// Store 2 outputs at a time.
psimd_store2_f32(output, vf);
output += 2;
// Accumulate 2 computed exponents.
vacc = psimd_add_f32(vacc, psimd_concat_lo_f32(vf, psimd_zero_f32()));
vf = psimd_concat_hi_f32(vf, vf);
}
if (elements & (1 * sizeof(float))) {
// Store 1 output at a time.
psimd_store1_f32(output, vf);
// Accumulate 1 computed exponent.
const psimd_f32 vzero = psimd_zero_f32();
vf = psimd_concat_lo_f32(vf, vzero);
vf = psimd_concat_even_f32(vf, vzero);
vacc = psimd_add_f32(vacc, vf);
}
}
// Reduce 4 elements in the SIMD register
*sum = psimd_reduce_sum_f32(vacc);
}