blob: 46f57f916df5e02074cc04332dbecc120b3acccf [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert ELEMENTS_TILE >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <xnnpack/common.h>
#include <xnnpack/raddstoreexpminusmax.h>
#include <fp16/bitcasts.h>
// Note redefine as uint32[] to avoid redundant bitcasts.
extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64];
void xnn_f32_raddstoreexpminusmax_ukernel__scalar_lut64_p2_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t elements,
const float* input,
float* output,
float* sum,
float vi_max)
{
assert(elements % sizeof(float) == 0);
const float vmagic_bias = 0x1.800000p23f;
// The smallest x for which expf(x) is normalized.
const float vdenorm_cutoff = -0x1.5D589Ep6f;
const float vlog2e_x64 = 0x1.715476p6f;
// Last 13 bits are zeroes
const float vminus_ln2_o64_hi = -0x1.630000p-7f;
const float vminus_ln2_o64_lo = 0x1.BD0106p-19f;
const float vc2 = 0x1.FFFF0Ap-2f;
const uint32_t vindex_mask = UINT32_C(0x3F);
$if ELEMENTS_TILE > 1:
$for K in range(ACCUMULATORS):
float vacc${K} = 0.0f;
for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
// Load ${ELEMENTS_TILE} inputs at a time.
$for N in range(ELEMENTS_TILE):
const float vi${N} = input[${N}];
input += ${ELEMENTS_TILE};
// Subtract maximum input x := i - i_max. This implies x <= 0.
$for N in range(ELEMENTS_TILE):
const float vx${N} = vi${N} - vi_max;
// Compute reduced argument n := round(x * 64 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
// the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
// |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
// result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
// algorithm.
$for N in range(ELEMENTS_TILE):
float vn${N} = vx${N} * vlog2e_x64 + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
// i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
// e := int(n / 64). We create s in two steps:
// 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
// fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
// number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
$for N in range(ELEMENTS_TILE):
const uint32_t ve${N} = (fp32_to_bits(vn${N}) & UINT32_C(0xFFFFFFC0)) << 17;
// Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
$for N in range(ELEMENTS_TILE):
const uint32_t vidx${N} = fp32_to_bits(vn${N}) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
$for N in range(ELEMENTS_TILE):
const float vs${N} = fp32_from_bits(xnn_table_exp2_k_over_64[vidx${N}] + ve${N});
// Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
$for N in range(ELEMENTS_TILE):
vn${N} -= vmagic_bias;
// Compute reduced argument t := x - n * log(2) / 64.
// Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
$for N in range(ELEMENTS_TILE):
float vt${N} = vn${N} * vminus_ln2_o64_hi + vx${N};
$for N in range(ELEMENTS_TILE):
vt${N} = vn${N} * vminus_ln2_o64_lo + vt${N};
// Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
$for N in range(ELEMENTS_TILE):
float vp${N} = vt${N} * vc2;
$for N in range(ELEMENTS_TILE):
vp${N} = vp${N} * vt${N} + vt${N};
// Reconstruct the final f value:
// f = s * (1 + t * (1 + t * c2))
// = s * (1 + t + t * (t * c2))
// = s + s * (t + t * (t * c2))
// = s + s * p
$for N in range(ELEMENTS_TILE):
float vf${N} = vp${N} * vs${N} + vs${N};
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
$for N in range(ELEMENTS_TILE):
if XNN_UNPREDICTABLE(vx${N} < vdenorm_cutoff) {
vf${N} = 0.0f;
}
// Store ${ELEMENTS_TILE} outputs at a time.
$for N in range(ELEMENTS_TILE):
output[${N}] = vf${N};
output += ${ELEMENTS_TILE};
// Accumulate computed exponents.
$for N in range(ELEMENTS_TILE):
vacc${N % ACCUMULATORS} += vf${N};
}
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A} += vacc${A + ACC_SLICE};
$ACC_SLICE *= 2
float vacc = vacc0;
$else:
float vacc = 0.0f;
for (; elements >= sizeof(float); elements -= sizeof(float)) {
// Load 1 input at a time.
const float vi = *input++;
// Subtract maximum input x := i - i_max. This implies x <= 0.
const float vx = vi - vi_max;
// Compute reduced argument n := round(x * 64 / log(2)).
// We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
// the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
// The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
// |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
// result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
// algorithm.
float vn = vx * vlog2e_x64 + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
// i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
// e := int(n / 64). We create s in two steps:
// 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
// fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
// number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
const uint32_t ve = (fp32_to_bits(vn) & UINT32_C(0xFFFFFFC0)) << 17;
// Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
const float vs = fp32_from_bits(xnn_table_exp2_k_over_64[vidx] + ve);
// Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := x - n * log(2) / 64.
// Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
float vt = vn * vminus_ln2_o64_hi + vx;
vt = vn * vminus_ln2_o64_lo + vt;
// Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
float vp = vt * vc2;
vp = vp * vt + vt;
// Reconstruct the final f value:
// f = s * (1 + t * (1 + t * c2))
// = s * (1 + t + t * (t * c2))
// = s + s * (t + t * (t * c2))
// = s + s * p
float vf = vp * vs + vs;
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
vf = 0.0f;
}
// Store 1 output at a time.
*output++ = vf;
// Accumulate computed exponents.
vacc += vf;
}
*sum = vacc;
}