blob: 79d2d0b8347504866aec6d10dd167604d1a2d4a8 [file] [log] [blame]
// Copyright 2022 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert NR % 8 == 0
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/igemm.h>
#include <xnnpack/intrinsics-polyfill.h>
void xnn_f16_igemm_minmax_ukernel_${MR}x${NR}__avx2_broadcast(
size_t mr,
size_t nc,
size_t kc,
size_t ks,
const void**restrict a,
const void*restrict w,
void*restrict c,
size_t cm_stride,
size_t cn_stride,
size_t a_offset,
const void* zero,
const union xnn_f16_scaleminmax_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(kc % sizeof(uint16_t) == 0);
assert(ks != 0);
assert(ks % (${MR} * sizeof(void*)) == 0);
assert(a_offset % sizeof(uint16_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
uint16_t* c0 = c;
$for M in range(1, MR):
uint16_t* c${M} = (uint16_t*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
c${M} = c${M-1};
}
do {
__m256 vacc0x${ABC[0:8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
$for N in range(8, NR, 8):
__m256 vacc0x${ABC[N:N+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) ((const uint16_t*) w + ${N})));
$for M in range(1, MR):
$for N in range(0, NR, 8):
__m256 vacc${M}x${ABC[N:N+8]} = vacc0x${ABC[N:N+8]};
w = (const uint16_t*) w + ${NR};
size_t p = ks;
do {
$for M in range(MR):
const uint16_t* restrict a${M} = (const uint16_t*) a[${M}];
assert(a${M} != NULL);
if XNN_UNPREDICTABLE(a${M} != zero) {
a${M} = (const uint16_t*) ((uintptr_t) a${M} + a_offset);
}
a += ${MR};
size_t k = kc;
do {
const __m256 vb${ABC[0:8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w));
$for N in range(8, NR, 8):
const __m256 vb${ABC[N:N+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) ((const uint16_t*) w + ${N})));
w = (const uint16_t*) w + ${NR};
$for M in range(MR):
const __m256 va${M} = _mm256_cvtph_ps(_mm_set1_epi16((short) *a${M}));
a${M} += 1;
$for M in range(MR):
$for N in range(0, NR, 8):
vacc${M}x${ABC[N:N+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(va${M}, vb${ABC[N:N+8]}, vacc${M}x${ABC[N:N+8]}), _MM_FROUND_NO_EXC));
k -= sizeof(uint16_t);
} while (k != 0);
p -= ${MR} * sizeof(void*);
} while (p != 0);
const __m256 vscale = _mm256_load_ps(params->avx.scale);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vacc${M}x${ABC[N:N+8]}, vscale), _MM_FROUND_NO_EXC));
const __m256 vmin = _mm256_load_ps(params->avx.min);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_max_ps(vacc${M}x${ABC[N:N+8]}, vmin);
const __m256 vmax = _mm256_load_ps(params->avx.max);
$for N in range(0, NR, 8):
$for M in range(MR):
vacc${M}x${ABC[N:N+8]} = _mm256_min_ps(vacc${M}x${ABC[N:N+8]}, vmax);
if XNN_LIKELY(nc >= ${NR}) {
$for M in reversed(range(MR)):
_mm_storeu_si128((__m128i*) c${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_NO_EXC));
$for N in range(8, NR, 8):
_mm_storeu_si128((__m128i*) (c${M} + ${N}), _mm256_cvtps_ph(vacc${M}x${ABC[N:N+8]}, _MM_FROUND_NO_EXC));
c${M} = (uint16_t*) ((uintptr_t) c${M} + cn_stride);
a = (const void**restrict) ((uintptr_t) a - ks);
nc -= ${NR};
} else {
$for LOG2N in reversed(range(NR.bit_length())):
$if LOG2N == 3:
$for M in reversed(range(MR)):
__m128i vh${M}x${ABC[0:8]} = _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_NO_EXC);
$if NR != 1 << LOG2N:
if (nc & ${1 << LOG2N}) {
$if LOG2N >= 4:
$for M in reversed(range(MR)):
_mm_storeu_si128((__m128i*) c${M}, _mm256_cvtps_ph(vacc${M}x${ABC[0:8]}, _MM_FROUND_NO_EXC));
$for N in range(8, 1 << LOG2N, 8):
_mm_storeu_si128((__m128i*) (c${M} + ${N}), _mm256_cvtps_ph(vacc${M}x${ABC[N:N+8]}, _MM_FROUND_NO_EXC));
$for M in reversed(range(MR)):
$for N in range(0, 1 << (LOG2N - 1), 8):
vacc${M}x${ABC[N:N+8]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+8]};
$for M in reversed(range(MR)):
c${M} += ${1 << LOG2N};
$elif LOG2N == 3:
$for M in reversed(range(MR)):
_mm_storeu_si128((__m128i*) c${M}, vh${M}x${ABC[0:8]});
$for M in reversed(range(MR)):
vh${M}x${ABC[0:8]} = _mm256_cvtps_ph(vacc${M}x${ABC[8:16]}, _MM_FROUND_NO_EXC);
$for M in reversed(range(MR)):
c${M} += ${1 << LOG2N};
$elif LOG2N == 2:
$for M in reversed(range(MR)):
_mm_storel_epi64((__m128i*) c${M}, vh${M}x${ABC[0:8]});
$for M in reversed(range(MR)):
vh${M}x${ABC[0:8]} = _mm_unpackhi_epi64(vh${M}x${ABC[0:8]}, vh${M}x${ABC[0:8]});
$for M in reversed(range(MR)):
c${M} += 4;
$elif LOG2N == 1:
$for M in reversed(range(MR)):
_mm_storeu_si32(c${M}, vh${M}x${ABC[0:8]});
$for M in reversed(range(MR)):
vh${M}x${ABC[0:8]} = _mm_srli_epi64(vh${M}x${ABC[0:8]}, 32);
$for M in reversed(range(MR)):
c${M} += 2;
$elif LOG2N == 0:
$for M in reversed(range(MR)):
*c${M} = _mm_extract_epi16(vh${M}x${ABC[0:8]}, 0);
}
nc = 0;
}
} while (nc != 0);
}