blob: 256ea3bef9ebb77df64632b9bc5b03c86d523292 [file] [log] [blame]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iomanip>
#include <ios>
#include <vector>
#include <gtest/gtest.h>
#include <fp16.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/common.h>
#include <xnnpack/isa-checks.h>
#include <xnnpack/math-stubs.h>
constexpr int kBlockSize = 1024;
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
TEST(CVT__SSE2, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, positive_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, negative_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, positive_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, negative_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, positive_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE2, negative_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE2, positive_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, negative_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE2, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE2, positive_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE2, negative_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__sse2(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
TEST(CVT__SSE41, positive_normal) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, negative_normal) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, positive_subnormal) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, negative_subnormal) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, positive_underflow) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, negative_underflow) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, positive_zero) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE41, negative_zero) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE41, positive_overflow) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, negative_overflow) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, positive_infinity) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE41, negative_infinity) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SSE41, positive_nan) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SSE41, negative_nan) {
TEST_REQUIRES_X86_SSE41;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__sse41(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
TEST(CVT__F16C, positive_normal) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, negative_normal) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, positive_subnormal) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, negative_subnormal) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, positive_underflow) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, negative_underflow) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, positive_zero) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__F16C, negative_zero) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__F16C, positive_overflow) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, negative_overflow) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, positive_infinity) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__F16C, negative_infinity) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__F16C, positive_nan) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__F16C, negative_nan) {
TEST_REQUIRES_X86_F16C;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__f16c(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(CVT__NEON, positive_normal) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, negative_normal) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, positive_subnormal) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, negative_subnormal) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, positive_underflow) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, negative_underflow) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, positive_zero) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEON, negative_zero) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEON, positive_overflow) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, negative_overflow) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, positive_infinity) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEON, negative_infinity) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEON, positive_nan) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEON, negative_nan) {
TEST_REQUIRES_ARM_NEON;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__neon(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(CVT__NEONFP16, positive_normal) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, negative_normal) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, positive_subnormal) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, negative_subnormal) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, positive_underflow) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, negative_underflow) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, positive_zero) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEONFP16, negative_zero) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEONFP16, positive_overflow) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, negative_overflow) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, positive_infinity) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEONFP16, negative_infinity) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__NEONFP16, positive_nan) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__NEONFP16, negative_nan) {
TEST_REQUIRES_ARM_NEON_FP16;
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__neonfp16(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
TEST(CVT__WASMSIMD, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, positive_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, negative_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, positive_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, negative_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, positive_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__WASMSIMD, negative_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__WASMSIMD, positive_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, negative_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__WASMSIMD, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__WASMSIMD, positive_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__WASMSIMD, negative_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__wasmsimd(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
#endif // XNN_ARCH_WASMSIMD || XNN_ARCH_WASMRELAXEDSIMD
TEST(CVT__SCALAR_BITCAST, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, positive_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, negative_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, positive_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, negative_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, positive_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_BITCAST, negative_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_BITCAST, positive_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, negative_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_BITCAST, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_BITCAST, positive_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_BITCAST, negative_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__scalar_bitcast(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x387FE000); n < UINT32_C(0x477FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB87FE000); n < UINT32_C(0xC77FF000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, positive_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x33000001); n < UINT32_C(0x387FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x387FDFFF)));
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, negative_subnormal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xB3000001); n < UINT32_C(0xB87FE000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0xB87FDFFF)));
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = fp16_ieee_from_fp32_value(inputs[i]);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, positive_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000001); n < UINT32_C(0x33000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, negative_underflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000001); n < UINT32_C(0xB3000001); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, positive_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +0.0f);
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x0000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_FABSF, negative_zero) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -0.0f);
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x8000);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_FABSF, positive_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x477FF000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, negative_overflow) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xC77FF000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[i])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0x7C00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_FABSF, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
const uint16_t reference_output = UINT16_C(0xFC00);
ASSERT_EQ(reference_output, outputs[0])
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(4) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[0];
}
TEST(CVT__SCALAR_FABSF, positive_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0x7C00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
ASSERT_LT(outputs[i], UINT16_C(0x8000))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}
TEST(CVT__SCALAR_FABSF, negative_nan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<uint16_t, AlignedAllocator<uint16_t, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800001); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::min<uint32_t>(n + i, UINT32_C(0x7FFFFFFF)));
}
xnn_math_f32_f16_cvt__scalar_fabsf(kBlockSize * sizeof(uint16_t), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
ASSERT_GT(outputs[i], UINT16_C(0xFC00))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", optimized = 0x" << std::hex << std::setw(4) << std::setfill('0') << outputs[i];
}
}
}