blob: 3e129c03d5331d92a602ccda5480a04ebf9468ad [file] [log] [blame]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert REQUANTIZATION == "FP32"
$assert DATATYPE in ["QC8", "QS8"]
$assert CHANNEL_TILE % 16 == 0
$assert CHANNEL_TILE >= 16
$assert KERNEL_TILE >= 2
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
$PARAMS_STRUCT = "avx2" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_avx2"
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_qs8_conv_minmax_params"
void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__avx2_mul16${"_add16" if ADD16 else ""}_vpunpck(
size_t channels,
size_t output_width,
const int8_t** input,
const void* weights,
int8_t* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const int8_t* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
do {
$for K in range(KERNEL_TILE):
const int8_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const int8_t*) ((uintptr_t) i${K} + input_offset);
}
input = (const int8_t**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
__m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w);
$for C in range(8, CHANNEL_TILE, 8):
__m256i vacc${ABC[C:C+8]} = _mm256_loadu_si256((const __m256i*) ((uintptr_t) w + ${C} * sizeof(int32_t)));
$for C in range(0, CHANNEL_TILE, 16):
__m256i vacc${ABC[C:C+4]}${ABC[C+8:C+12]} = _mm256_inserti128_si256(vacc${ABC[C:C+8]}, _mm256_castsi256_si128(vacc${ABC[C+8:C+16]}), 1);
__m256i vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_permute2x128_si256(vacc${ABC[C:C+8]}, vacc${ABC[C+8:C+16]}, 0x31);
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
const __m256i vi${K}x${ABC[0:16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) i${K}));
$else:
const __m256i vi${K}x${ABC[C:C+16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) (i${K} + ${C})));
const __m256i vk${K}x${ABC[C:C+16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(int8_t))));
i${K} += ${CHANNEL_TILE};
$if ADD16:
$for C in range(0, CHANNEL_TILE, 16):
$if K == 0:
__m256i vacc${ABC[C:C+16]} = _mm256_mullo_epi16(vi${K}x${ABC[C:C+16]}, vk${K}x${ABC[C:C+16]});
$elif K % 2 == 0 or K + 1 == KERNEL_TILE:
vacc${ABC[C:C+16]} = _mm256_mullo_epi16(vi${K}x${ABC[C:C+16]}, vk${K}x${ABC[C:C+16]});
$else:
vacc${ABC[C:C+16]} = _mm256_add_epi16(vacc${ABC[C:C+16]}, _mm256_mullo_epi16(vi${K}x${ABC[C:C+16]}, vk${K}x${ABC[C:C+16]}));
$if K % 2 == 1 or K + 1 == KERNEL_TILE:
$for C in range(0, CHANNEL_TILE, 16):
$if K == 1:
__m256i vsignacc${ABC[C:C+16]} = _mm256_srai_epi16(vacc${ABC[C:C+16]}, 15);
$else:
vsignacc${ABC[C:C+16]} = _mm256_srai_epi16(vacc${ABC[C:C+16]}, 15);
vacc${ABC[C:C+4]}${ABC[C+8:C+12]} = _mm256_add_epi32(vacc${ABC[C:C+4]}${ABC[C+8:C+12]}, _mm256_unpacklo_epi16(vacc${ABC[C:C+16]}, vsignacc${ABC[C:C+16]}));
vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_add_epi32(vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]}, _mm256_unpackhi_epi16(vacc${ABC[C:C+16]}, vsignacc${ABC[C:C+16]}));
$else:
$for C in range(0, CHANNEL_TILE, 16):
const __m256i vprod${K}x${ABC[C:C+16]}lo = _mm256_mullo_epi16(vi${K}x${ABC[C:C+16]}, vk${K}x${ABC[C:C+16]});
const __m256i vprod${K}x${ABC[C:C+16]}hi = _mm256_srai_epi16(vprod${K}x${ABC[C:C+16]}lo, 15);
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C:C+4]}${ABC[C+8:C+12]} = _mm256_add_epi32(vacc${ABC[C:C+4]}${ABC[C+8:C+12]}, _mm256_unpacklo_epi16(vprod${K}x${ABC[C:C+16]}lo, vprod${K}x${ABC[C:C+16]}hi));
vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_add_epi32(vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]}, _mm256_unpackhi_epi16(vprod${K}x${ABC[C:C+16]}lo, vprod${K}x${ABC[C:C+16]}hi));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(int8_t));
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C:C+8]} = _mm256_inserti128_si256(vacc${ABC[C:C+4]}${ABC[C+8:C+12]}, _mm256_castsi256_si128(vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]}), 1);
vacc${ABC[C+8:C+16]} = _mm256_permute2x128_si256(vacc${ABC[C:C+4]}${ABC[C+8:C+12]}, vacc${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 0x31);
$for C in range(0, CHANNEL_TILE, 8):
__m256 vfpacc${ABC[C:C+8]} = _mm256_cvtepi32_ps(vacc${ABC[C:C+8]});
$if DATATYPE == "QC8":
const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) w);
$for C in range(8, CHANNEL_TILE, 8):
const __m256 vscale${ABC[C:C+8]} = _mm256_loadu_ps((const float*) ((uintptr_t) w + ${C} * sizeof(float)));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(float));
$for C in range(0, CHANNEL_TILE, 8):
vfpacc${ABC[C:C+8]} = _mm256_mul_ps(vfpacc${ABC[C:C+8]}, vscale${ABC[C:C+8]});
$else:
const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
$for C in range(0, CHANNEL_TILE, 8):
vfpacc${ABC[C:C+8]} = _mm256_mul_ps(vfpacc${ABC[C:C+8]}, vscale);
const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
$for C in range(0, CHANNEL_TILE, 8):
vfpacc${ABC[C:C+8]} = _mm256_min_ps(vfpacc${ABC[C:C+8]}, voutput_max_less_zero_point);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = _mm256_cvtps_epi32(vfpacc${ABC[C:C+8]});
const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
const __m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(vacc${ABC[C:C+8]}, vacc${ABC[C+8:C+16]}), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
__m128i vout${ABC[C:C+16]} = _mm_shuffle_epi32(_mm_packs_epi16(_mm256_castsi256_si128(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}), _mm256_extracti128_si256(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 1)), _MM_SHUFFLE(3, 1, 2, 0));
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
$for C in range(0, CHANNEL_TILE, 16):
vout${ABC[C:C+16]} = _mm_max_epi8(vout${ABC[C:C+16]}, voutput_min);
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$for C in range(16, CHANNEL_TILE, 16):
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE > 16:
const int8_t* k = (const int8_t*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t));
${"do " if CHANNEL_TILE > 16 else ""}{
__m256i vacc${ABC[0:8]} = _mm256_loadu_si256((const __m256i*) w);
__m256i vacc${ABC[8:16]} = _mm256_loadu_si256((const __m256i*) ((uintptr_t) w + 8 * sizeof(int32_t)));
__m256i vacc${ABC[0:4]}${ABC[8:12]} = _mm256_inserti128_si256(vacc${ABC[0:8]}, _mm256_castsi256_si128(vacc${ABC[8:16]}), 1);
__m256i vacc${ABC[4:8]}${ABC[12:16]} = _mm256_permute2x128_si256(vacc${ABC[0:8]}, vacc${ABC[8:16]}, 0x31);
$for K in range(KERNEL_TILE):
const __m256i vi${K}x${ABC[0:16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) i${K}));
$if CHANNEL_TILE > 16:
$if K == 0:
const __m256i vk${K}x${ABC[0:16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) k));
$else:
const __m256i vk${K}x${ABC[0:16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) (k + ${K * CHANNEL_TILE})));
$else:
const __m256i vk${K}x${ABC[0:16]} = _mm256_cvtepi8_epi16(_mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(int8_t))));
$if CHANNEL_TILE > 16:
i${K} += 16;
const __m256i vprod${K}x${ABC[0:16]}lo = _mm256_mullo_epi16(vi${K}x${ABC[0:16]}, vk${K}x${ABC[0:16]});
const __m256i vprod${K}x${ABC[0:16]}hi = _mm256_srai_epi16(vprod${K}x${ABC[0:16]}lo, 15);
vacc${ABC[0:4]}${ABC[8:12]} = _mm256_add_epi32(vacc${ABC[0:4]}${ABC[8:12]}, _mm256_unpacklo_epi16(vprod${K}x${ABC[0:16]}lo, vprod${K}x${ABC[0:16]}hi));
vacc${ABC[4:8]}${ABC[12:16]} = _mm256_add_epi32(vacc${ABC[4:8]}${ABC[12:16]}, _mm256_unpackhi_epi16(vprod${K}x${ABC[0:16]}lo, vprod${K}x${ABC[0:16]}hi));
vacc${ABC[0:8]} = _mm256_inserti128_si256(vacc${ABC[0:4]}${ABC[8:12]}, _mm256_castsi256_si128(vacc${ABC[4:8]}${ABC[12:16]}), 1);
vacc${ABC[8:16]} = _mm256_permute2x128_si256(vacc${ABC[0:4]}${ABC[8:12]}, vacc${ABC[4:8]}${ABC[12:16]}, 0x31);
$if CHANNEL_TILE > 16:
k += 16;
__m256 vfpacc${ABC[0:8]} = _mm256_cvtepi32_ps(vacc${ABC[0:8]});
__m256 vfpacc${ABC[8:16]} = _mm256_cvtepi32_ps(vacc${ABC[8:16]});
$if DATATYPE == "QC8":
const __m256 vscale${ABC[0:8]} = _mm256_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(int8_t)));
const __m256 vscale${ABC[8:16]} = _mm256_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(int8_t) + 8 * sizeof(float)));
vfpacc${ABC[0:8]} = _mm256_mul_ps(vfpacc${ABC[0:8]}, vscale${ABC[0:8]});
vfpacc${ABC[8:16]} = _mm256_mul_ps(vfpacc${ABC[8:16]}, vscale${ABC[8:16]});
$else:
const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
vfpacc${ABC[0:8]} = _mm256_mul_ps(vfpacc${ABC[0:8]}, vscale);
vfpacc${ABC[8:16]} = _mm256_mul_ps(vfpacc${ABC[8:16]}, vscale);
const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
vfpacc${ABC[0:8]} = _mm256_min_ps(vfpacc${ABC[0:8]}, voutput_max_less_zero_point);
vfpacc${ABC[8:16]} = _mm256_min_ps(vfpacc${ABC[8:16]}, voutput_max_less_zero_point);
vacc${ABC[0:8]} = _mm256_cvtps_epi32(vfpacc${ABC[0:8]});
vacc${ABC[8:16]} = _mm256_cvtps_epi32(vfpacc${ABC[8:16]});
$if CHANNEL_TILE > 16:
w = (const void*) ((uintptr_t) w + 16 * sizeof(int32_t));
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[0:8]}), _mm256_extracti128_si256(vacc${ABC[0:8]}, 1)), voutput_zero_point);
__m128i vout${ABC[8:16]} = _mm_adds_epi16(_mm_packs_epi32(_mm256_castsi256_si128(vacc${ABC[8:16]}), _mm256_extracti128_si256(vacc${ABC[8:16]}, 1)), voutput_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
__m128i vout${ABC[0:16]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[8:16]});
vout${ABC[0:16]} = _mm_max_epi8(vout${ABC[0:16]}, voutput_min);
$if CHANNEL_TILE > 16:
if XNN_LIKELY(c >= 16) {
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
output += 16;
c -= 16;
} else {
if (c & 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:16]});
vout${ABC[0:16]} = _mm_unpackhi_epi64(vout${ABC[0:16]}, vout${ABC[0:16]});
output += 8;
}
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:16]});
vout${ABC[0:16]} = _mm_srli_epi64(vout${ABC[0:16]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:16]}, 0);
vout${ABC[0:16]} = _mm_srli_epi32(vout${ABC[0:16]}, 16);
output += 2;
}
if (c & 1) {
*output = (int8_t) _mm_extract_epi8(vout${ABC[0:16]}, 0);
output += 1;
}
c = 0;
}
$else:
if (c & 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:16]});
vout${ABC[0:16]} = _mm_unpackhi_epi64(vout${ABC[0:16]}, vout${ABC[0:16]});
output += 8;
}
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:16]});
vout${ABC[0:16]} = _mm_srli_epi64(vout${ABC[0:16]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:16]}, 0);
vout${ABC[0:16]} = _mm_srli_epi32(vout${ABC[0:16]}, 16);
output += 2;
}
if (c & 1) {
*output = (int8_t) _mm_extract_epi8(vout${ABC[0:16]}, 0);
output += 1;
}
}${" while (c != 0);" if CHANNEL_TILE > 16 else ""}
}
output = (int8_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}