blob: c9c26ba3099614aa086ab2f9dc460c6f290ad366 [file] [log] [blame]
// Copyright 2021 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert KERNEL_TILE >= 2
$assert REQUANTIZATION == "FP32"
$assert VARIANT in ["FMAGIC", "IMAGIC", "LRINTF"]
$assert DATATYPE in ["QC8", "QS8", "QU8"]
#include <assert.h>
$if VARIANT == "LRINTF":
#include <math.h>
$elif VARIANT in ["FMAGIC", "IMAGIC"]:
#include <fp16.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/math.h>
$PARAMS_STRUCT = ("" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_") + "scalar" + ("_" + VARIANT.lower() if VARIANT else "")
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
$MIN_F32 = "__builtin_wasm_min_f32" if WASM else "math_min_f32"
$MAX_F32 = "__builtin_wasm_max_f32" if WASM else "math_max_f32"
void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${"wasm" if WASM else "scalar"}_${VARIANT.lower()}(
size_t channels,
size_t output_width,
const ${XINT8_T}** input,
const void* weights,
${XINT8_T}* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const ${XINT8_T}* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(channels != 0);
assert(output_width != 0);
$if DATATYPE != "QC8":
const float vscale = params->${PARAMS_STRUCT}.scale;
$if VARIANT == "FMAGIC":
const float voutput_min_less_zero_point = params->${PARAMS_STRUCT}.output_min_less_zero_point;
const float voutput_max_less_zero_point = params->${PARAMS_STRUCT}.output_max_less_zero_point;
const float vmagic_bias = params->${PARAMS_STRUCT}.magic_bias;
const int32_t vmagic_bias_less_output_zero_point = params->${PARAMS_STRUCT}.magic_bias_less_output_zero_point;
$elif VARIANT == "IMAGIC":
const float vmagic_bias = params->${PARAMS_STRUCT}.magic_bias;
const int32_t vmagic_min = params->${PARAMS_STRUCT}.magic_min;
const int32_t vmagic_max = params->${PARAMS_STRUCT}.magic_max;
const int32_t vmagic_bias_less_zero_point = params->${PARAMS_STRUCT}.magic_bias_less_zero_point;
$elif VARIANT == "LRINTF":
const float voutput_min_less_zero_point = params->${PARAMS_STRUCT}.output_min_less_zero_point;
const float voutput_max_less_zero_point = params->${PARAMS_STRUCT}.output_max_less_zero_point;
const int32_t voutput_zero_point = params->${PARAMS_STRUCT}.output_zero_point;
$if DATATYPE == "QU8":
const int32_t vkernel_zero_point = params->${PARAMS_STRUCT}.kernel_zero_point;
do {
$for K in range(KERNEL_TILE):
const ${XINT8_T}* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset);
}
input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
$if CHANNEL_TILE == 1:
do {
int32_t vacc = *((const int32_t*) w);
$for K in range(KERNEL_TILE):
$if DATATYPE == "QU8":
const int32_t vi${K} = (int32_t) (uint32_t) *i${K}++;
$else:
const int32_t vi${K} = (int32_t) *i${K}++;
$if DATATYPE == "QU8":
const int32_t vk${K} = (int32_t) (uint32_t) ((const ${XINT8_T}*) ((uintptr_t) w + sizeof(int32_t)))[${K}] - vkernel_zero_point;
$else:
const int32_t vk${K} = ((const ${XINT8_T}*) ((uintptr_t) w + sizeof(int32_t)))[${K}];
vacc += vi${K} * vk${K};
w = (const void*) ((uintptr_t) w + sizeof(int32_t) + ${KERNEL_TILE} * sizeof(${XINT8_T}));
$if DATATYPE == "QC8":
$if CHANNEL_TILE % 4 != 0:
typedef XNN_UNALIGNED float unaligned_float;
const float vscale = *((const unaligned_float*) w);
w = (const void*) ((const float*) w + 1);
$else:
const float vscale = *((const float*) w);
w = (const void*) ((const float*) w + 1);
float vfpacc = (float) vacc * vscale;
$if VARIANT == "FMAGIC":
vfpacc = ${MAX_F32}(vfpacc, voutput_min_less_zero_point);
vfpacc = ${MIN_F32}(vfpacc, voutput_max_less_zero_point);
vfpacc += vmagic_bias;
int32_t vout = (int32_t) fp32_to_bits(vfpacc) - vmagic_bias_less_output_zero_point;
$elif VARIANT == "IMAGIC":
vfpacc += vmagic_bias;
int32_t vout = (int32_t) fp32_to_bits(vfpacc);
vout = math_max_s32(vout, vmagic_min);
vout = math_min_s32(vout, vmagic_max);
vout -= vmagic_bias_less_zero_point;
$elif VARIANT == "LRINTF":
vfpacc = ${MAX_F32}(vfpacc, voutput_min_less_zero_point);
vfpacc = ${MIN_F32}(vfpacc, voutput_max_less_zero_point);
const int32_t vrndacc = (int32_t) lrintf(vfpacc);
int32_t vout = vrndacc + voutput_zero_point;
*output++ = (${XINT8_T}) vout;
} while (--c != 0);
$else:
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(CHANNEL_TILE):
int32_t vacc${C} = ((const int32_t*) w)[${C}];
$for K in range(KERNEL_TILE):
$for C in range(CHANNEL_TILE):
$if DATATYPE == "QU8":
const int32_t vi${K}x${C} = (int32_t) (uint32_t) i${K}[${C}];
$else:
const int32_t vi${K}x${C} = (int32_t) i${K}[${C}];
i${K} += ${CHANNEL_TILE};
$for C in range(CHANNEL_TILE):
$if DATATYPE == "QU8":
const int32_t vk${K}x${C} = (int32_t) (uint32_t) ((const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)))[${K * CHANNEL_TILE + C}] - vkernel_zero_point;
$else:
const int32_t vk${K}x${C} = (int32_t) ((const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)))[${K * CHANNEL_TILE + C}];
$for C in range(CHANNEL_TILE):
vacc${C} += vi${K}x${C} * vk${K}x${C};
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T}));
$for C in range(CHANNEL_TILE):
float vfpacc${C} = (float) vacc${C};
$if DATATYPE == "QC8":
$if CHANNEL_TILE % 4 != 0:
typedef XNN_UNALIGNED float unaligned_float;
$for C in range(CHANNEL_TILE):
const float vscale${C} = ((const unaligned_float*) w)[${C}];
$else:
$for C in range(CHANNEL_TILE):
const float vscale${C} = ((const float*) w)[${C}];
w = (const void*) ((const float*) w + ${CHANNEL_TILE});
$for C in range(CHANNEL_TILE):
vfpacc${C} *= vscale${C};
$else:
$for C in range(CHANNEL_TILE):
vfpacc${C} *= vscale;
$if VARIANT == "FMAGIC":
$for C in range(CHANNEL_TILE):
vfpacc${C} = ${MAX_F32}(vfpacc${C}, voutput_min_less_zero_point);
$for C in range(CHANNEL_TILE):
vfpacc${C} = ${MIN_F32}(vfpacc${C}, voutput_max_less_zero_point);
$for C in range(CHANNEL_TILE):
vfpacc${C} += vmagic_bias;
$for C in range(CHANNEL_TILE):
int32_t vout${C} = (int32_t) fp32_to_bits(vfpacc${C}) - vmagic_bias_less_output_zero_point;
$elif VARIANT == "IMAGIC":
$for C in range(CHANNEL_TILE):
vfpacc${C} += vmagic_bias;
$for C in range(CHANNEL_TILE):
int32_t vout${C} = (int32_t) fp32_to_bits(vfpacc${C});
$for C in range(CHANNEL_TILE):
vout${C} = math_max_s32(vout${C}, vmagic_min);
$for C in range(CHANNEL_TILE):
vout${C} = math_min_s32(vout${C}, vmagic_max);
$for C in range(CHANNEL_TILE):
vout${C} -= vmagic_bias_less_zero_point;
$elif VARIANT == "LRINTF":
$for C in range(CHANNEL_TILE):
vfpacc${C} = ${MAX_F32}(vfpacc${C}, voutput_min_less_zero_point);
$for C in range(CHANNEL_TILE):
vfpacc${C} = ${MIN_F32}(vfpacc${C}, voutput_max_less_zero_point);
$for C in range(CHANNEL_TILE):
const int32_t vrndacc${C} = (int32_t) lrintf(vfpacc${C});
$for C in range(CHANNEL_TILE):
int32_t vout${C} = (int32_t) vrndacc${C} + voutput_zero_point;
$for C in range(CHANNEL_TILE):
output[${C}] = (${XINT8_T}) vout${C};
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE == 2:
int32_t vacc = *((const int32_t*) w);
$for K in range(KERNEL_TILE):
$if DATATYPE == "QU8":
const int32_t vi${K} = (int32_t) (uint32_t) *i${K};
$else:
const int32_t vi${K} = (int32_t) *i${K};
$if DATATYPE == "QU8":
const int32_t vk${K} = (int32_t) (uint32_t) ((const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)))[${K * CHANNEL_TILE}] - vkernel_zero_point;
$else:
const int32_t vk${K} = (int32_t) ((const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t)))[${K * CHANNEL_TILE}];
vacc += vi${K} * vk${K};
$if DATATYPE == "QC8":
$if CHANNEL_TILE % 4 != 0:
typedef XNN_UNALIGNED float unaligned_float;
const float vscale = *((const unaligned_float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})));
$else:
const float vscale = *((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})));
float vfpacc = (float) vacc * vscale;
$if VARIANT == "FMAGIC":
vfpacc = ${MAX_F32}(vfpacc, voutput_min_less_zero_point);
vfpacc = ${MIN_F32}(vfpacc, voutput_max_less_zero_point);
vfpacc += vmagic_bias;
int32_t vout = (int32_t) fp32_to_bits(vfpacc) - vmagic_bias_less_output_zero_point;
$elif VARIANT == "IMAGIC":
vfpacc += vmagic_bias;
int32_t vout = (int32_t) fp32_to_bits(vfpacc);
vout = math_max_s32(vout, vmagic_min);
vout = math_min_s32(vout, vmagic_max);
vout -= vmagic_bias_less_zero_point;
$elif VARIANT == "LRINTF":
vfpacc = ${MAX_F32}(vfpacc, voutput_min_less_zero_point);
vfpacc = ${MIN_F32}(vfpacc, voutput_max_less_zero_point);
const int32_t vrndacc = (int32_t) lrintf(vfpacc);
int32_t vout = vrndacc + voutput_zero_point;
*output++ = (${XINT8_T}) vout;
$else:
const ${XINT8_T}* k = (const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t));
do {
int32_t vacc = *((const int32_t*) w);
w = (const void*) ((uintptr_t) w + sizeof(int32_t));
$for K in range(KERNEL_TILE):
$if DATATYPE == "QU8":
const int32_t vi${K} = (int32_t) (uint32_t) *i${K}++;
$else:
const int32_t vi${K} = (int32_t) *i${K}++;
$if DATATYPE == "QU8":
const int32_t vk${K} = (int32_t) (uint32_t) k[${K * CHANNEL_TILE}] - vkernel_zero_point;
$else:
const int32_t vk${K} = (int32_t) k[${K * CHANNEL_TILE}];
vacc += vi${K} * vk${K};
k += 1;
$if DATATYPE == "QC8":
$if CHANNEL_TILE % 4 != 0:
typedef XNN_UNALIGNED float unaligned_float;
const float vscale = *((const unaligned_float*) ((uintptr_t) w + ${CHANNEL_TILE - 1} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})));
$else:
const float vscale = *((const float*) ((uintptr_t) w + ${CHANNEL_TILE - 1} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T})));
float vfpacc = (float) vacc * vscale;
$if VARIANT == "FMAGIC":
vfpacc = ${MAX_F32}(vfpacc, voutput_min_less_zero_point);
vfpacc = ${MIN_F32}(vfpacc, voutput_max_less_zero_point);
vfpacc += vmagic_bias;
int32_t vout = (int32_t) fp32_to_bits(vfpacc) - vmagic_bias_less_output_zero_point;
$elif VARIANT == "IMAGIC":
vfpacc += vmagic_bias;
int32_t vout = (int32_t) fp32_to_bits(vfpacc);
vout = math_max_s32(vout, vmagic_min);
vout = math_min_s32(vout, vmagic_max);
vout -= vmagic_bias_less_zero_point;
$elif VARIANT == "LRINTF":
vfpacc = ${MAX_F32}(vfpacc, voutput_min_less_zero_point);
vfpacc = ${MIN_F32}(vfpacc, voutput_max_less_zero_point);
const int32_t vrndacc = (int32_t) lrintf(vfpacc);
int32_t vout = vrndacc + voutput_zero_point;
*output++ = (${XINT8_T}) vout;
} while (--c != 0);
}
output = (${XINT8_T}*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}