blob: c7670d5a3304061f525910f9ff30383d8bb97082 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert SSE in [2, 4]
$assert not XOP or AVX
$assert not AVX or SSE == 4
$assert REQUANTIZATION == "FP32"
$assert DATATYPE in ["QC8", "QS8", "QU8"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$SSE_HEADER = {2: "emmintrin.h", 4: "smmintrin.h"}[SSE]
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert KERNEL_TILE >= 2
#include <assert.h>
$if XOP:
#if defined(__GNUC__) || defined(__clang__)
#include <x86intrin.h>
#else
#include <immintrin.h>
#include <ammintrin.h>
#endif
$else:
#include <${SSE_HEADER}>
#include <xnnpack/dwconv.h>
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
$PARAMS_STRUCT = ("" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_") + ("sse4" if SSE == 4 and DATATYPE != "QU8" else "sse2")
$ISA = "xop" if XOP else "avx" if AVX else {2: "sse2", 4: "sse41"}[SSE]
$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}_mul16${"_add16" if ADD16 else ""}(
size_t channels,
size_t output_width,
const ${XINT8_T}** input,
const void* weights,
${XINT8_T}* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const ${XINT8_T}* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
do {
$for K in range(KERNEL_TILE):
const ${XINT8_T}* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset);
}
input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
$if DATATYPE == "QU8":
const __m128i vk_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.kernel_zero_point);
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
__m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w);
$for C in range(4, CHANNEL_TILE, 4):
__m128i vacc${ABC[C:C+4]} = _mm_loadu_si128((const __m128i*) ((const int32_t*) w + ${C}));
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
$if C == 0:
const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K});
$else:
const __m128i vi${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${K} + ${C}));
$if SSE == 4:
$if DATATYPE == "QU8":
const __m128i vxi${K}x${ABC[C:C+8]} = _mm_cvtepu8_epi16(vi${K}x${ABC[C:C+8]});
$else:
const __m128i vxi${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[C:C+8]});
const __m128i vk${K}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})));
$if SSE == 4:
$if DATATYPE == "QU8":
const __m128i vxk${K}x${ABC[C:C+8]} = _mm_sub_epi16(_mm_cvtepu8_epi16(vk${K}x${ABC[C:C+8]}), vk_zero_point);
$else:
const __m128i vxk${K}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[C:C+8]});
i${K} += ${CHANNEL_TILE};
$if SSE < 4:
$if DATATYPE == "QU8":
$if K == 0:
const __m128i vzero = _mm_setzero_si128();
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vxi${K}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, vzero);
const __m128i vxk${K}x${ABC[C:C+8]} = _mm_sub_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, vzero), vk_zero_point);
$else:
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vxi${K}x${ABC[C:C+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vi${K}x${ABC[C:C+8]}, vi${K}x${ABC[C:C+8]}), 8);
const __m128i vxk${K}x${ABC[C:C+8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), 8);
$for C in range(0, CHANNEL_TILE, 8):
$if DATATYPE == "QU8" or SSE < 4 and not ADD16:
const __m128i vprod${K}x${ABC[C:C+8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
const __m128i vprod${K}x${ABC[C:C+8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
$elif K == 0:
__m128i vprod${ABC[C:C+8]} = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
$elif K % 2 == 0 or K + 1 == KERNEL_TILE or not ADD16:
vprod${ABC[C:C+8]} = _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]});
$elif XOP:
vprod${ABC[C:C+8]} = _mm_macc_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}, vprod${ABC[C:C+8]});
$else:
vprod${ABC[C:C+8]} = _mm_add_epi16(vprod${ABC[C:C+8]}, _mm_mullo_epi16(vxi${K}x${ABC[C:C+8]}, vxk${K}x${ABC[C:C+8]}));
$if not ADD16 or K % 2 == 1 or K + 1 == KERNEL_TILE:
$for C in range(0, CHANNEL_TILE, 8):
$if DATATYPE == "QU8" or SSE < 4 and not ADD16:
vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vprod${K}x${ABC[C:C+8]}lo, vprod${K}x${ABC[C:C+8]}hi));
vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vprod${K}x${ABC[C:C+8]}lo, vprod${K}x${ABC[C:C+8]}hi));
$elif SSE < 4:
const __m128i vsignprod${K}x${ABC[C:C+8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vprod${ABC[C:C+8]});
vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_unpacklo_epi16(vprod${ABC[C:C+8]}, vsignprod${K}x${ABC[C:C+8]}));
vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_unpackhi_epi16(vprod${ABC[C:C+8]}, vsignprod${K}x${ABC[C:C+8]}));
$else:
vacc${ABC[C:C+4]} = _mm_add_epi32(vacc${ABC[C:C+4]}, _mm_cvtepi16_epi32(vprod${ABC[C:C+8]}));
vacc${ABC[C+4:C+8]} = _mm_add_epi32(vacc${ABC[C+4:C+8]}, _mm_srai_epi32(_mm_unpackhi_epi16(vprod${ABC[C:C+8]}, vprod${ABC[C:C+8]}), 16));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T}));
$for C in range(0, CHANNEL_TILE, 4):
__m128 vscaled${ABC[C:C+4]} = _mm_cvtepi32_ps(vacc${ABC[C:C+4]});
$if DATATYPE == "QC8":
const __m128 vscale${ABC[0:4]} = _mm_loadu_ps((const float*) w);
$for C in range(4, CHANNEL_TILE, 4):
const __m128 vscale${ABC[C:C+4]} = _mm_loadu_ps((const float*) w + ${C});
w = (const void*) ((const float*) w + ${CHANNEL_TILE});
$for C in range(0, CHANNEL_TILE, 4):
vscaled${ABC[C:C+4]} = _mm_mul_ps(vscaled${ABC[C:C+4]}, vscale${ABC[C:C+4]});
$else:
const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale);
$for C in range(0, CHANNEL_TILE, 4):
vscaled${ABC[C:C+4]} = _mm_mul_ps(vscaled${ABC[C:C+4]}, vscale);
const __m128 voutput_max_less_zero_point = _mm_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
$for C in range(0, CHANNEL_TILE, 4):
vscaled${ABC[C:C+4]} = _mm_min_ps(vscaled${ABC[C:C+4]}, voutput_max_less_zero_point);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = _mm_cvtps_epi32(vscaled${ABC[C:C+4]});
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
$for C in range(0, CHANNEL_TILE, 8):
__m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[C:C+4]}, vacc${ABC[C+4:C+8]}), voutput_zero_point);
$if DATATYPE == "QU8":
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m128i vout${ABC[C:C+16]} = _mm_packus_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]});
$else:
__m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packus_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]});
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = _mm_max_epu8(vout${ABC[C:C+16]}, voutput_min);
$else:
vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_max_epu8(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min);
$else:
$if SSE < 4:
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
$for C in range(0, CHANNEL_TILE, 8):
vout${ABC[C:C+8]} = _mm_max_epi16(vout${ABC[C:C+8]}, voutput_min);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m128i vout${ABC[C:C+16]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]});
$else:
__m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]});
$if SSE == 4:
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = _mm_max_epi8(vout${ABC[C:C+16]}, voutput_min);
$else:
vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_max_epi8(vout${ABC[C:C+8]}${ABC[C:C+8]}, voutput_min);
$if CHANNEL_TILE > 8:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$else:
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
$for C in range(16, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
$else:
_mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]});
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE > 8:
const ${XINT8_T}* k = (const ${XINT8_T}*) ((const int32_t*) w + ${CHANNEL_TILE});
${"do " if CHANNEL_TILE > 8 else ""}{
__m128i vacc${ABC[0:4]} = _mm_loadu_si128((const __m128i*) w);
__m128i vacc${ABC[4:8]} = _mm_loadu_si128((const __m128i*) ((const int32_t*) w + 4));
$for K in range(KERNEL_TILE):
const __m128i vi${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${K});
$if SSE == 4:
$if DATATYPE == "QU8":
const __m128i vxi${K}x${ABC[0:8]} = _mm_cvtepu8_epi16(vi${K}x${ABC[0:8]});
$else:
const __m128i vxi${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vi${K}x${ABC[0:8]});
$if CHANNEL_TILE > 8:
$if K == 0:
const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) k);
$else:
const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) (k + ${K * CHANNEL_TILE}));
$else:
const __m128i vk${K}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})));
$if SSE == 4:
$if DATATYPE == "QU8":
const __m128i vxk${K}x${ABC[0:8]} = _mm_sub_epi16(_mm_cvtepu8_epi16(vk${K}x${ABC[0:8]}), vk_zero_point);
$else:
const __m128i vxk${K}x${ABC[0:8]} = _mm_cvtepi8_epi16(vk${K}x${ABC[0:8]});
$if CHANNEL_TILE > 8:
i${K} += 8;
$if SSE < 4:
$if DATATYPE == "QU8":
$if K == 0:
const __m128i vzero = _mm_setzero_si128();
const __m128i vxi${K}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, vzero);
const __m128i vxk${K}x${ABC[0:8]} = _mm_sub_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, vzero), vk_zero_point);
$else:
const __m128i vxi${K}x${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vi${K}x${ABC[0:8]}, vi${K}x${ABC[0:8]}), 8);
const __m128i vxk${K}x${ABC[0:8]} = _mm_srai_epi16(_mm_unpacklo_epi8(vk${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]}), 8);
$if DATATYPE == "QU8" or SSE < 4 and not ADD16:
const __m128i vprod${K}x${ABC[0:8]}lo = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
const __m128i vprod${K}x${ABC[0:8]}hi = _mm_mulhi_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
$elif K == 0:
__m128i vprod${ABC[0:8]} = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
$elif K % 2 == 0 or K + 1 == KERNEL_TILE or not ADD16:
vprod${ABC[0:8]} = _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]});
$elif XOP:
vprod${ABC[0:8]} = _mm_macc_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}, vprod${ABC[0:8]});
$else:
vprod${ABC[0:8]} = _mm_add_epi16(vprod${ABC[0:8]}, _mm_mullo_epi16(vxi${K}x${ABC[0:8]}, vxk${K}x${ABC[0:8]}));
$if not ADD16 or K % 2 == 1 or K + 1 == KERNEL_TILE:
$if DATATYPE == "QU8" or SSE < 4 and not ADD16:
vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vprod${K}x${ABC[0:8]}lo, vprod${K}x${ABC[0:8]}hi));
vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vprod${K}x${ABC[0:8]}lo, vprod${K}x${ABC[0:8]}hi));
$elif SSE < 4:
const __m128i vsignprod${K}x${ABC[0:8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vprod${ABC[0:8]});
vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_unpacklo_epi16(vprod${ABC[0:8]}, vsignprod${K}x${ABC[0:8]}));
vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_unpackhi_epi16(vprod${ABC[0:8]}, vsignprod${K}x${ABC[0:8]}));
$else:
vacc${ABC[0:4]} = _mm_add_epi32(vacc${ABC[0:4]}, _mm_cvtepi16_epi32(vprod${ABC[0:8]}));
vacc${ABC[4:8]} = _mm_add_epi32(vacc${ABC[4:8]}, _mm_srai_epi32(_mm_unpackhi_epi16(vprod${ABC[0:8]}, vprod${ABC[0:8]}), 16));
$if CHANNEL_TILE > 8:
k += 8;
__m128 vscaled${ABC[0:4]} = _mm_cvtepi32_ps(vacc${ABC[0:4]});
__m128 vscaled${ABC[4:8]} = _mm_cvtepi32_ps(vacc${ABC[4:8]});
$if DATATYPE == "QC8":
const __m128 vscale${ABC[0:4]} = _mm_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T})));
const __m128 vscale${ABC[4:8]} = _mm_loadu_ps((const float*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T}) + 4 * sizeof(float)));
vscaled${ABC[0:4]} = _mm_mul_ps(vscaled${ABC[0:4]}, vscale${ABC[0:4]});
vscaled${ABC[4:8]} = _mm_mul_ps(vscaled${ABC[4:8]}, vscale${ABC[4:8]});
$else:
const __m128 vscale = _mm_load_ps(params->${PARAMS_STRUCT}.scale);
vscaled${ABC[0:4]} = _mm_mul_ps(vscaled${ABC[0:4]}, vscale);
vscaled${ABC[4:8]} = _mm_mul_ps(vscaled${ABC[4:8]}, vscale);
const __m128 voutput_max_less_zero_point = _mm_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
vscaled${ABC[0:4]} = _mm_min_ps(vscaled${ABC[0:4]}, voutput_max_less_zero_point);
vscaled${ABC[4:8]} = _mm_min_ps(vscaled${ABC[4:8]}, voutput_max_less_zero_point);
vacc${ABC[0:4]} = _mm_cvtps_epi32(vscaled${ABC[0:4]});
vacc${ABC[4:8]} = _mm_cvtps_epi32(vscaled${ABC[4:8]});
$if CHANNEL_TILE > 8:
w = (const void*) ((const int32_t*) w + 8);
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_zero_point);
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vacc${ABC[0:4]}, vacc${ABC[4:8]}), voutput_zero_point);
$if DATATYPE == "QU8":
__m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packus_epi16(vout${ABC[0:8]}, vout${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_max_epu8(vout${ABC[0:8]}${ABC[0:8]}, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min));
$else:
$if SSE < 4:
vout${ABC[0:8]} = _mm_max_epi16(vout${ABC[0:8]}, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min));
__m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]});
$if SSE == 4:
vout${ABC[0:8]}${ABC[0:8]} = _mm_max_epi8(vout${ABC[0:8]}${ABC[0:8]}, _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min));
$if CHANNEL_TILE > 8:
if XNN_LIKELY(c >= 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
output += 8;
c -= 8;
} else {
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (c & 1) {
$if SSE == 4:
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
output += 1;
}
c = 0;
}
$else:
if (c & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (c & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (c & 1) {
$if SSE == 4:
*output = (${XINT8_T}) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (${XINT8_T}) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
output += 1;
}
}${" while (c != 0);" if CHANNEL_TILE > 8 else ""}
}
output = (${XINT8_T}*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}