blob: 449fe83fb82583630519d76dcd4c8bde47587e46 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert REQUANTIZATION == "FP32"
$assert DATATYPE in ["QC8", "QS8", "QU8"]
$assert MR <= 4
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/igemm.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/math.h>
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
$PARAMS_STRUCT = "avx2" if DATATYPE == "QC8" else "fp32_avx2"
$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
void xnn_${DATATYPE.lower()}_igemm_minmax_fp32_ukernel_${MR}x8c8__avx2(
size_t mr,
size_t nc,
size_t kc,
size_t ks,
const ${XINT8_T}** restrict a,
const void* restrict w,
${XINT8_T}* restrict c,
size_t cm_stride,
size_t cn_stride,
size_t a_offset,
const ${XINT8_T}* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(ks != 0);
assert(ks % (${MR} * sizeof(void*)) == 0);
assert(a_offset % sizeof(${XINT8_T}) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
kc = round_up_po2(kc, 8);
${XINT8_T}* c0 = c;
$for M in range(1, MR):
${XINT8_T}* c${M} = (${XINT8_T}*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
c${M} = c${M-1};
}
do {
const __m128i vbias0x0 = _mm_loadu_si32(w);
const __m128i vbias0x1 = _mm_loadu_si32((const int32_t*) w + 1);
__m256i vacc0x01 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x0), vbias0x1, 1);
$for N in range(2, 8, 2):
const __m128i vbias0x${N} = _mm_loadu_si32((const int32_t*) w + ${N});
const __m128i vbias0x${N+1} = _mm_loadu_si32((const int32_t*) w + ${N+1});
__m256i vacc0x${N}${N+1} = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x${N}), vbias0x${N+1}, 1);
$for M in range(1, MR):
$for N in range(0, 8, 2):
__m256i vacc${M}x${N}${N+1} = vacc0x${N}${N+1};
w = (const void*) ((const int32_t*) w + 8);
size_t p = ks;
$if DATATYPE == "QU8":
const __m256i vb_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.kernel_zero_point);
do {
$for M in range(MR):
const ${XINT8_T}* restrict a${M} = a[${M}];
if XNN_UNPREDICTABLE(a${M} != zero) {
a${M} = (const ${XINT8_T}*) ((uintptr_t) a${M} + a_offset);
}
a += ${MR};
size_t k = 0;
while (k < kc) {
$for M in range(MR):
const __m128i va${M} = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a${M}));
$if DATATYPE == "QU8":
const __m256i vxa${M} = _mm256_cvtepu8_epi16(va${M});
$else:
const __m256i vxa${M} = _mm256_cvtepi8_epi16(va${M});
a${M} += 8;
$for N in range(0, 8, 2):
$if N == 0:
const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w);
$else:
const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((const ${XINT8_T}*) w + ${N * 8}));
$if DATATYPE == "QU8":
const __m256i vxb${N}${N+1} = _mm256_sub_epi16(_mm256_cvtepu8_epi16(vb${N}${N+1}), vb_zero_point);
$else:
const __m256i vxb${N}${N+1} = _mm256_cvtepi8_epi16(vb${N}${N+1});
$for M in range(MR):
vacc${M}x${N}${N+1} = _mm256_add_epi32(vacc${M}x${N}${N+1}, _mm256_madd_epi16(vxa${M}, vxb${N}${N+1}));
w = (const void*) ((const ${XINT8_T}*) w + 64);
k += 8 * sizeof(${XINT8_T});
}
p -= ${MR} * sizeof(void*);
} while (p != 0);
$for M in range(MR):
const __m256i vacc${M}x0213 = _mm256_hadd_epi32(vacc${M}x01, vacc${M}x23);
const __m256i vacc${M}x4657 = _mm256_hadd_epi32(vacc${M}x45, vacc${M}x67);
$for M in range(MR):
const __m256i vacc${M}x02461357 = _mm256_hadd_epi32(vacc${M}x0213, vacc${M}x4657);
const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
$for M in range(MR):
__m256i vacc${M}x01234567 = _mm256_permutevar8x32_epi32(vacc${M}x02461357, vpermute_mask);
$for M in range(MR):
__m256 vscaled${M}x01234567 = _mm256_cvtepi32_ps(vacc${M}x01234567);
$if DATATYPE == "QC8":
const __m256 vscale01234567 = _mm256_load_ps(w);
w = (const void*) ((const float*) w + 8);
$for M in range(MR):
vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale01234567);
$else:
const __m256 vscale = _mm256_load_ps(params->fp32_avx2.scale);
$for M in range(MR):
vscaled${M}x01234567 = _mm256_mul_ps(vscaled${M}x01234567, vscale);
const __m256 voutput_max_less_zero_point = _mm256_load_ps(params->${PARAMS_STRUCT}.output_max_less_zero_point);
$for M in range(MR):
vscaled${M}x01234567 = _mm256_min_ps(vscaled${M}x01234567, voutput_max_less_zero_point);
$for M in range(MR):
vacc${M}x01234567 = _mm256_cvtps_epi32(vscaled${M}x01234567);
const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
$for M in range(0, MR, 2):
__m256i vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc${M}x01234567, vacc${min(M+1, MR-1)}x01234567), voutput_zero_point);
$for M in range(0, MR, 2):
vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_permute4x64_epi64(vacc${M}${min(M+1, MR-1)}x01234567, _MM_SHUFFLE(3, 1, 2, 0));
$if DATATYPE == "QU8":
$if MR > 2:
__m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
$else:
__m256i vout = _mm256_packus_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
vout = _mm256_max_epu8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
$else:
$if MR > 2:
__m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
$else:
__m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
vout = _mm256_max_epi8(vout, _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min));
__m128i vout_lo = _mm256_castsi256_si128(vout);
__m128i vout_hi = _mm256_extracti128_si256(vout, 1);
if (nc >= 8) {
$if MR > 3:
_mm_storeh_pi((__m64*) c3, _mm_castsi128_ps(vout_hi));
$if MR > 2:
_mm_storeh_pi((__m64*) c2, _mm_castsi128_ps(vout_lo));
$if MR > 1:
_mm_storel_epi64((__m128i*) c1, vout_hi);
_mm_storel_epi64((__m128i*) c0, vout_lo);
$for M in reversed(range(MR)):
c${M} = (${XINT8_T}*) ((uintptr_t) c${M} + cn_stride);
a = (const ${XINT8_T}**restrict) ((uintptr_t) a - ks);
nc -= 8;
} else {
if (nc & 4) {
$if MR > 3:
*((uint32_t*) c3) = (uint32_t) _mm_extract_epi32(vout_hi, 2);
$if MR > 2:
*((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout_lo, 2);
$if MR > 1:
_mm_storeu_si32(c1, vout_hi);
_mm_storeu_si32(c0, vout_lo);
$for M in reversed(range(MR)):
c${M} += 4;
vout_lo = _mm_srli_epi64(vout_lo, 32);
vout_hi = _mm_srli_epi64(vout_hi, 32);
}
if (nc & 2) {
$if MR > 3:
*((uint16_t*) c3) = (uint16_t) _mm_extract_epi16(vout_hi, 4);
$if MR > 2:
*((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout_lo, 4);
$if MR > 1:
*((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout_hi, 0);
*((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout_lo, 0);
$for M in reversed(range(MR)):
c${M} += 2;
vout_lo = _mm_srli_epi32(vout_lo, 16);
vout_hi = _mm_srli_epi32(vout_hi, 16);
}
if (nc & 1) {
$if MR > 3:
*c3 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 8);
$if MR > 2:
*c2 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 8);
$if MR > 1:
*c1 = (${XINT8_T}) _mm_extract_epi8(vout_hi, 0);
*c0 = (${XINT8_T}) _mm_extract_epi8(vout_lo, 0);
}
nc = 0;
}
} while (nc != 0);
}