blob: 621fa5b6893936e42f6aa9a26d404d2bf7024c98 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stdint.h>
#include <stddef.h>
#include <fp16/bitcasts.h>
#include <xnnpack/math.h>
#include <xnnpack/requantization-stubs.h>
void xnn_qs8_requantize_rndna__scalar_unsigned64(
size_t n,
const int32_t* input,
float scale,
int8_t zero_point,
int8_t qmin,
int8_t qmax,
int8_t* output)
{
assert(n % 4 == 0);
assert(scale < 1.0f);
assert(scale >= 0x1.0p-32f);
const uint32_t scale_bits = fp32_to_bits(scale);
const uint32_t multiplier = (scale_bits & UINT32_C(0x007FFFFF)) | UINT32_C(0x00800000);
const uint32_t shift = 127 + 23 - (scale_bits >> 23);
assert(shift >= 24);
assert(shift < 56);
const uint64_t rounding = UINT64_C(1) << (shift - 1);
const int32_t smin = (int32_t) qmin - (int32_t) zero_point;
const int32_t smax = (int32_t) qmax - (int32_t) zero_point;
for (; n != 0; n -= 4) {
const int32_t x = input[0];
const int32_t y = input[1];
const int32_t z = input[2];
const int32_t w = input[3];
input += 4;
// Compute absolute value of input as unsigned 32-bit int.
// All further computations will work with unsigned values to avoid undefined behaviour on signed operations.
const uint32_t x_abs = (x >= 0) ? (uint32_t) x : -(uint32_t) x;
const uint32_t y_abs = (y >= 0) ? (uint32_t) y : -(uint32_t) y;
const uint32_t z_abs = (z >= 0) ? (uint32_t) z : -(uint32_t) z;
const uint32_t w_abs = (w >= 0) ? (uint32_t) w : -(uint32_t) w;
// Compute full 64-bit product of 32-bit factors.
const uint64_t x_product = (uint64_t) x_abs * (uint64_t) multiplier;
const uint64_t y_product = (uint64_t) y_abs * (uint64_t) multiplier;
const uint64_t z_product = (uint64_t) z_abs * (uint64_t) multiplier;
const uint64_t w_product = (uint64_t) w_abs * (uint64_t) multiplier;
// Shift the full 64-bit product right with rounding.
// Rounding is performed towards closest integer, with midpoints rounded up (same as away from zero).
//
// Note that although rounding is precomputed, it is dependent on shift value, and on processors with 64-bit
// "right shift with rounding" instruction each line below can be represented by just one such instruction
// (e.g. VRSHL.U64 on ARM NEON, URSHL in ARM64 Advanced SIMD).
const uint32_t x_abs_scaled = (uint32_t) ((x_product + rounding) >> shift);
const uint32_t y_abs_scaled = (uint32_t) ((y_product + rounding) >> shift);
const uint32_t z_abs_scaled = (uint32_t) ((z_product + rounding) >> shift);
const uint32_t w_abs_scaled = (uint32_t) ((w_product + rounding) >> shift);
// Copy the sign of input to scaled absolute input value.
//
// On x86 processors with SSSE3 instruction set, this operation nicely maps to PSIGND instruction.
const int32_t x_scaled = (int32_t) (x >= 0 ? x_abs_scaled : -x_abs_scaled);
const int32_t y_scaled = (int32_t) (y >= 0 ? y_abs_scaled : -y_abs_scaled);
const int32_t z_scaled = (int32_t) (z >= 0 ? z_abs_scaled : -z_abs_scaled);
const int32_t w_scaled = (int32_t) (w >= 0 ? w_abs_scaled : -w_abs_scaled);
// Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point).
const int32_t x_clamped = math_min_s32(math_max_s32(x_scaled, smin), smax);
const int32_t y_clamped = math_min_s32(math_max_s32(y_scaled, smin), smax);
const int32_t z_clamped = math_min_s32(math_max_s32(z_scaled, smin), smax);
const int32_t w_clamped = math_min_s32(math_max_s32(w_scaled, smin), smax);
// Add zero point to clamped value.
// The result is guaranteed to be in [qmin, qmax] range.
//
// This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519]
// range, so addition of zero point (which can be up to 127) can overflow signed 32-bit integer.
const int32_t x_biased = x_clamped + zero_point;
const int32_t y_biased = y_clamped + zero_point;
const int32_t z_biased = z_clamped + zero_point;
const int32_t w_biased = w_clamped + zero_point;
output[0] = (int8_t) x_biased;
output[1] = (int8_t) y_biased;
output[2] = (int8_t) z_biased;
output[3] = (int8_t) w_biased;
output += 4;
}
}