blob: 99e10b0587f8322219ce7a8bcb0348564874fd66 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert REQUANTIZATION == "RNDNU"
$assert DATATYPE == "QU8"
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert KERNEL_TILE >= 2
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
void xnn_qu8_dwconv_minmax_rndnu_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__neon_mul8(
size_t channels,
size_t output_width,
const uint8_t** input,
const void* weights,
uint8_t* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const uint8_t* zero,
const union xnn_qu8_conv_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS
{
assert(channels != 0);
assert(output_width != 0);
const uint8x8_t vkernel_zero_point = vld1_dup_u8(params->rndnu_neon.kernel_zero_point);
const uint16x8_t vkernel_zero_point16 = vmovl_u8(vkernel_zero_point);
const int32x4_t vright_pre_shift = vld1q_dup_s32(&params->rndnu_neon.right_pre_shift);
const int32x4_t vmultiplier = vld1q_dup_s32(&params->rndnu_neon.multiplier);
const int32x4_t vright_post_shift = vld1q_dup_s32(&params->rndnu_neon.right_post_shift);
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->rndnu_neon.output_zero_point);
$if CHANNEL_TILE == 8:
const uint8x8_t voutput_min = vld1_dup_u8(&params->rndnu_neon.output_min);
const uint8x8_t voutput_max = vld1_dup_u8(&params->rndnu_neon.output_max);
$else:
const uint8x16_t voutput_min = vld1q_dup_u8(&params->rndnu_neon.output_min);
const uint8x16_t voutput_max = vld1q_dup_u8(&params->rndnu_neon.output_max);
do {
$for K in range(KERNEL_TILE):
const uint8_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const uint8_t*) ((uintptr_t) i${K} + input_offset);
}
input = (const uint8_t**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 4):
int32x4_t vacc${ABC[C:C+4]} = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
const uint8x8_t vi${K}x${ABC[C:C+8]} = vld1_u8(i${K}); i${K} += 8;
const uint8x8_t vk${K}x${ABC[C:C+8]} = vld1_u8(w); w = (const void*) ((const int8_t*) w + 8);
$for C in range(0, CHANNEL_TILE, 8):
$if K == 0:
uint16x8_t vprod${ABC[C:C+8]} = vmull_u8(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$else:
vprod${ABC[C:C+8]} = vmull_u8(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$if KERNEL_TILE == 1:
uint16x8_t vsum${ABC[0:8]} = vmovl_u8(vi${K}x${ABC[0:8]});
$if K == 1:
uint16x8_t vsum${ABC[C:C+8]} = vaddl_u8(vi0x${ABC[C:C+8]}, vi1x${ABC[C:C+8]});
$elif K > 1:
vsum${ABC[C:C+8]} = vaddw_u8(vsum${ABC[C:C+8]}, vi${K}x${ABC[C:C+8]});
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+4]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[C:C+4]}), vget_low_u16(vprod${ABC[C:C+8]})));
vacc${ABC[C+4:C+8]} = vreinterpretq_s32_u32(vaddw_u16(vreinterpretq_u32_s32(vacc${ABC[C+4:C+8]}), vget_high_u16(vprod${ABC[C:C+8]})));
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+4]} = vreinterpretq_s32_u32(vmlsl_u16(vreinterpretq_u32_s32(vacc${ABC[C:C+4]}), vget_low_u16(vsum${ABC[C:C+8]}), vget_low_u16(vkernel_zero_point16)));
vacc${ABC[C+4:C+8]} = vreinterpretq_s32_u32(vmlsl_u16(vreinterpretq_u32_s32(vacc${ABC[C+4:C+8]}), vget_high_u16(vsum${ABC[C:C+8]}), vget_high_u16(vkernel_zero_point16)));
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vshlq_s32(vacc${ABC[C:C+4]}, vright_pre_shift);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vqdmulhq_s32(vacc${ABC[C:C+4]}, vmultiplier);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vrshlq_s32(vacc${ABC[C:C+4]}, vright_post_shift);
#if XNN_ARCH_ARM64
$for C in range(0, CHANNEL_TILE, 8):
const int16x8_t vacc${ABC[C:C+8]} = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc${ABC[C:C+4]}), vacc${ABC[C+4:C+8]}), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
uint8x16_t vout${ABC[C:C+16]} = vqmovun_high_s16(vqmovun_s16(vacc${ABC[C:C+8]}), vacc${ABC[C+8:C+16]});
$else:
uint8x8_t vout${ABC[C:C+8]} = vqmovun_s16(vacc${ABC[C:C+8]});
#else
$for C in range(0, CHANNEL_TILE, 8):
const int16x8_t vacc${ABC[C:C+8]} = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc${ABC[C:C+4]}), vqmovn_s32(vacc${ABC[C+4:C+8]})), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
uint8x16_t vout${ABC[C:C+16]} = vcombine_u8(vqmovun_s16(vacc${ABC[C:C+8]}), vqmovun_s16(vacc${ABC[C+8:C+16]}));
$else:
uint8x8_t vout${ABC[C:C+8]} = vqmovun_s16(vacc${ABC[C:C+8]});
#endif
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = vmaxq_u8(vout${ABC[C:C+16]}, voutput_min);
$else:
$if CHANNEL_TILE == 8:
vout${ABC[C:C+8]} = vmax_u8(vout${ABC[C:C+8]}, voutput_min);
$else:
vout${ABC[C:C+8]} = vmax_u8(vout${ABC[C:C+8]}, vget_low_u8(voutput_min));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = vminq_u8(vout${ABC[C:C+16]}, voutput_max);
$else:
$if CHANNEL_TILE == 8:
vout${ABC[C:C+8]} = vmin_u8(vout${ABC[C:C+8]}, voutput_max);
$else:
vout${ABC[C:C+8]} = vmin_u8(vout${ABC[C:C+8]}, vget_low_u8(voutput_max));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vst1q_u8(output, vout${ABC[C:C+16]}); output += 16;
$else:
vst1_u8(output, vout${ABC[C:C+8]}); output += 8;
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE > 8:
const uint8_t* k = (const uint8_t*) ((const int32_t*) w + ${CHANNEL_TILE});
${"do " if CHANNEL_TILE > 8 else ""}{
int32x4_t vacc${ABC[0:4]} = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
int32x4_t vacc${ABC[4:8]} = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
$for K in range(KERNEL_TILE):
$if CHANNEL_TILE > 8:
const int16x8_t vi${K}x${ABC[0:8]} = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(i${K}))); i${K} += 8;
$else:
const int16x8_t vi${K}x${ABC[0:8]} = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(i${K})));
$if CHANNEL_TILE > 8:
$if K == 0:
const int16x8_t vk${K}x${ABC[0:8]} = vreinterpretq_s16_u16(vsubl_u8(vld1_u8(k), vkernel_zero_point)); k += 8;
$else:
const int16x8_t vk${K}x${ABC[0:8]} = vreinterpretq_s16_u16(vsubl_u8(vld1_u8((const void*) (k + ${K * CHANNEL_TILE - 8})), vkernel_zero_point));
$else:
$if K == 0:
const int16x8_t vk${K}x${ABC[0:8]} = vreinterpretq_s16_u16(vsubl_u8(vld1_u8(w), vkernel_zero_point));
$else:
const int16x8_t vk${K}x${ABC[0:8]} = vreinterpretq_s16_u16(vsubl_u8(vld1_u8((const void*) ((const uint8_t*) w + ${K * CHANNEL_TILE})), vkernel_zero_point));
vacc${ABC[0:4]} = vmlal_s16(vacc${ABC[0:4]}, vget_low_s16(vi${K}x${ABC[0:8]}), vget_low_s16(vk${K}x${ABC[0:8]}));
vacc${ABC[4:8]} = vmlal_s16(vacc${ABC[4:8]}, vget_high_s16(vi${K}x${ABC[0:8]}), vget_high_s16(vk${K}x${ABC[0:8]}));
vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vright_pre_shift);
vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vright_pre_shift);
vacc${ABC[0:4]} = vqdmulhq_s32(vacc${ABC[0:4]}, vmultiplier);
vacc${ABC[4:8]} = vqdmulhq_s32(vacc${ABC[4:8]}, vmultiplier);
vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vright_post_shift);
vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vright_post_shift);
#if XNN_ARCH_ARM64
const int16x8_t vacc${ABC[0:8]} = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc${ABC[0:4]}), vacc${ABC[4:8]}), voutput_zero_point);
uint8x8_t vout${ABC[0:8]} = vqmovun_s16(vacc${ABC[0:8]});
#else
const int16x8_t vacc${ABC[0:8]} = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc${ABC[0:4]}), vqmovn_s32(vacc${ABC[4:8]})), voutput_zero_point);
uint8x8_t vout${ABC[0:8]} = vqmovun_s16(vacc${ABC[0:8]});
#endif
$if CHANNEL_TILE == 8:
vout${ABC[0:8]} = vmax_u8(vout${ABC[0:8]}, voutput_min);
vout${ABC[0:8]} = vmin_u8(vout${ABC[0:8]}, voutput_max);
$else:
vout${ABC[0:8]} = vmax_u8(vout${ABC[0:8]}, vget_low_u8(voutput_min));
vout${ABC[0:8]} = vmin_u8(vout${ABC[0:8]}, vget_low_u8(voutput_max));
$if CHANNEL_TILE > 8:
if XNN_LIKELY(c >= 8) {
vst1_u8(output, vout${ABC[0:8]}); output += 8;
c -= 8;
} else {
if (c & 4) {
vst1_lane_u32((void*) output, vreinterpret_u32_u8(vout${ABC[0:8]}), 0); output += 4;
vout${ABC[0:8]} = vext_u8(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
}
if (c & 2) {
vst1_lane_u16((void*) output, vreinterpret_u16_u8(vout${ABC[0:8]}), 0); output += 2;
vout${ABC[0:8]} = vext_u8(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
}
if (c & 1) {
vst1_lane_u8(output, vout${ABC[0:8]}, 0); output += 1;
}
c = 0;
}
$else:
if (c & 4) {
vst1_lane_u32((void*) output, vreinterpret_u32_u8(vout${ABC[0:8]}), 0); output += 4;
vout${ABC[0:8]} = vext_u8(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
}
if (c & 2) {
vst1_lane_u16((void*) output, vreinterpret_u16_u8(vout${ABC[0:8]}), 0); output += 2;
vout${ABC[0:8]} = vext_u8(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
}
if (c & 1) {
vst1_lane_u8(output, vout${ABC[0:8]}, 0); output += 1;
}
}${" while (c != 0);" if CHANNEL_TILE > 8 else ""}
}
output = (uint8_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}