blob: 59d33b21f3e3269d80c6403e8138c8592d92c615 [file] [log] [blame]
Marat Dukhan4c4eb002019-12-08 21:27:49 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/avx2-p5.c.in
3// Generator: tools/xngen
4//
Marat Dukhan97579532019-10-18 16:40:39 -07005// Copyright 2019 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <immintrin.h>
13
14#include <xnnpack/raddstoreexpminusmax.h>
15
16
Marat Dukhan4c4eb002019-12-08 21:27:49 -080017static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
Marat Dukhan97579532019-10-18 16:40:39 -070018
Marat Dukhan4c4eb002019-12-08 21:27:49 -080019void xnn_f32_raddstoreexpminusmax_ukernel__avx2_p5_x72_acc3(
20 size_t elements,
Marat Dukhan97579532019-10-18 16:40:39 -070021 const float* input,
22 float* output,
23 float* sum,
24 float max)
25{
Marat Dukhan4c4eb002019-12-08 21:27:49 -080026 assert(elements % sizeof(float) == 0);
Marat Dukhan97579532019-10-18 16:40:39 -070027
28 const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
29 // The smallest x for which expf(x) is normalized.
30 const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep6f);
31 const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
32 const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
33 const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
34
35 const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
36 const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
37 const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
38 const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
39 const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
40
41 const __m256 vi_max = _mm256_set1_ps(max);
42
43 __m256 vacc0 = _mm256_setzero_ps();
44 __m256 vacc1 = _mm256_setzero_ps();
45 __m256 vacc2 = _mm256_setzero_ps();
Marat Dukhan4c4eb002019-12-08 21:27:49 -080046 for (; elements >= 72 * sizeof(float); elements -= 72 * sizeof(float)) {
47 // Load 72 (9x8) inputs at a time.
Marat Dukhan97579532019-10-18 16:40:39 -070048 const __m256 vi0 = _mm256_loadu_ps(input);
49 const __m256 vi1 = _mm256_loadu_ps(input + 8);
50 const __m256 vi2 = _mm256_loadu_ps(input + 16);
51 const __m256 vi3 = _mm256_loadu_ps(input + 24);
52 const __m256 vi4 = _mm256_loadu_ps(input + 32);
53 const __m256 vi5 = _mm256_loadu_ps(input + 40);
54 const __m256 vi6 = _mm256_loadu_ps(input + 48);
55 const __m256 vi7 = _mm256_loadu_ps(input + 56);
Marat Dukhan4c4eb002019-12-08 21:27:49 -080056 const __m256 vi8 = _mm256_loadu_ps(input + 64);
57 input += 72;
Marat Dukhan97579532019-10-18 16:40:39 -070058
59 // Subtract maximum input x := i - i_max. This implies x <= 0.
60 const __m256 vx0 = _mm256_sub_ps(vi0, vi_max);
61 const __m256 vx1 = _mm256_sub_ps(vi1, vi_max);
62 const __m256 vx2 = _mm256_sub_ps(vi2, vi_max);
63 const __m256 vx3 = _mm256_sub_ps(vi3, vi_max);
64 const __m256 vx4 = _mm256_sub_ps(vi4, vi_max);
65 const __m256 vx5 = _mm256_sub_ps(vi5, vi_max);
66 const __m256 vx6 = _mm256_sub_ps(vi6, vi_max);
67 const __m256 vx7 = _mm256_sub_ps(vi7, vi_max);
Marat Dukhan4c4eb002019-12-08 21:27:49 -080068 const __m256 vx8 = _mm256_sub_ps(vi8, vi_max);
Marat Dukhan97579532019-10-18 16:40:39 -070069
Marat Dukhan4c4eb002019-12-08 21:27:49 -080070 // Compute reduced argument elements := round(x / log(2)).
Marat Dukhan97579532019-10-18 16:40:39 -070071 __m256 vn0 = _mm256_fmadd_ps(vx0, vlog2e, vmagic_bias);
72 __m256 vn1 = _mm256_fmadd_ps(vx1, vlog2e, vmagic_bias);
73 __m256 vn2 = _mm256_fmadd_ps(vx2, vlog2e, vmagic_bias);
74 __m256 vn3 = _mm256_fmadd_ps(vx3, vlog2e, vmagic_bias);
75 __m256 vn4 = _mm256_fmadd_ps(vx4, vlog2e, vmagic_bias);
76 __m256 vn5 = _mm256_fmadd_ps(vx5, vlog2e, vmagic_bias);
77 __m256 vn6 = _mm256_fmadd_ps(vx6, vlog2e, vmagic_bias);
78 __m256 vn7 = _mm256_fmadd_ps(vx7, vlog2e, vmagic_bias);
Marat Dukhan4c4eb002019-12-08 21:27:49 -080079 __m256 vn8 = _mm256_fmadd_ps(vx8, vlog2e, vmagic_bias);
Marat Dukhan97579532019-10-18 16:40:39 -070080
Marat Dukhan4c4eb002019-12-08 21:27:49 -080081 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
82 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
Marat Dukhan97579532019-10-18 16:40:39 -070083 const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
84 const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
85 const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
86 const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
87 const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
88 const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
89 const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
90 const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
Marat Dukhan4c4eb002019-12-08 21:27:49 -080091 const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
Marat Dukhan97579532019-10-18 16:40:39 -070092
Marat Dukhan4c4eb002019-12-08 21:27:49 -080093 // Subtract the large number back to get final elements := round(x / log(2)).
Marat Dukhan97579532019-10-18 16:40:39 -070094 vn0 = _mm256_sub_ps(vn0, vmagic_bias);
95 vn1 = _mm256_sub_ps(vn1, vmagic_bias);
96 vn2 = _mm256_sub_ps(vn2, vmagic_bias);
97 vn3 = _mm256_sub_ps(vn3, vmagic_bias);
98 vn4 = _mm256_sub_ps(vn4, vmagic_bias);
99 vn5 = _mm256_sub_ps(vn5, vmagic_bias);
100 vn6 = _mm256_sub_ps(vn6, vmagic_bias);
101 vn7 = _mm256_sub_ps(vn7, vmagic_bias);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800102 vn8 = _mm256_sub_ps(vn8, vmagic_bias);
Marat Dukhan97579532019-10-18 16:40:39 -0700103
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800104 // Compute reduced argument t := x - elements * log(2).
Marat Dukhan97579532019-10-18 16:40:39 -0700105 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
106 __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_hi, vx0);
107 __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_hi, vx1);
108 __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_hi, vx2);
109 __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_hi, vx3);
110 __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_hi, vx4);
111 __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_hi, vx5);
112 __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_hi, vx6);
113 __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_hi, vx7);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800114 __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_hi, vx8);
Marat Dukhan97579532019-10-18 16:40:39 -0700115
116 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2_lo, vt0);
117 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2_lo, vt1);
118 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2_lo, vt2);
119 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2_lo, vt3);
120 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2_lo, vt4);
121 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2_lo, vt5);
122 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2_lo, vt6);
123 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2_lo, vt7);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800124 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2_lo, vt8);
Marat Dukhan97579532019-10-18 16:40:39 -0700125
Marat Dukhan102a7392020-11-20 01:18:10 -0800126 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan97579532019-10-18 16:40:39 -0700127 __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
128 __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
129 __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
130 __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
131 __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
132 __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
133 __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
134 __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800135 __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
Marat Dukhan97579532019-10-18 16:40:39 -0700136
137 vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
138 vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
139 vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
140 vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
141 vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
142 vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
143 vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
144 vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800145 vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
Marat Dukhan97579532019-10-18 16:40:39 -0700146
147 vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
148 vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
149 vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
150 vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
151 vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
152 vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
153 vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
154 vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800155 vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
Marat Dukhan97579532019-10-18 16:40:39 -0700156
157 vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
158 vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
159 vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
160 vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
161 vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
162 vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
163 vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
164 vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800165 vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
Marat Dukhan97579532019-10-18 16:40:39 -0700166
167 // Reconstruct the final f value:
168 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
169 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
170 // = s + (t * s) * p
171 vt0 = _mm256_mul_ps(vt0, vs0);
172 vt1 = _mm256_mul_ps(vt1, vs1);
173 vt2 = _mm256_mul_ps(vt2, vs2);
174 vt3 = _mm256_mul_ps(vt3, vs3);
175 vt4 = _mm256_mul_ps(vt4, vs4);
176 vt5 = _mm256_mul_ps(vt5, vs5);
177 vt6 = _mm256_mul_ps(vt6, vs6);
178 vt7 = _mm256_mul_ps(vt7, vs7);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800179 vt8 = _mm256_mul_ps(vt8, vs8);
Marat Dukhan97579532019-10-18 16:40:39 -0700180
181 __m256 vf0 = _mm256_fmadd_ps(vt0, vp0, vs0);
182 __m256 vf1 = _mm256_fmadd_ps(vt1, vp1, vs1);
183 __m256 vf2 = _mm256_fmadd_ps(vt2, vp2, vs2);
184 __m256 vf3 = _mm256_fmadd_ps(vt3, vp3, vs3);
185 __m256 vf4 = _mm256_fmadd_ps(vt4, vp4, vs4);
186 __m256 vf5 = _mm256_fmadd_ps(vt5, vp5, vs5);
187 __m256 vf6 = _mm256_fmadd_ps(vt6, vp6, vs6);
188 __m256 vf7 = _mm256_fmadd_ps(vt7, vp7, vs7);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800189 __m256 vf8 = _mm256_fmadd_ps(vt8, vp8, vs8);
Marat Dukhan97579532019-10-18 16:40:39 -0700190
191 // For inputs below zero cutoff, replace output with +0.0f.
192 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
193 vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vx0, vdenorm_cutoff, _CMP_LT_OS), vf0);
194 vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vx1, vdenorm_cutoff, _CMP_LT_OS), vf1);
195 vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vx2, vdenorm_cutoff, _CMP_LT_OS), vf2);
196 vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vx3, vdenorm_cutoff, _CMP_LT_OS), vf3);
197 vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vx4, vdenorm_cutoff, _CMP_LT_OS), vf4);
198 vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vx5, vdenorm_cutoff, _CMP_LT_OS), vf5);
199 vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vx6, vdenorm_cutoff, _CMP_LT_OS), vf6);
200 vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vx7, vdenorm_cutoff, _CMP_LT_OS), vf7);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800201 vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vx8, vdenorm_cutoff, _CMP_LT_OS), vf8);
Marat Dukhan97579532019-10-18 16:40:39 -0700202
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800203 // Store 72 (9x8) outputs at a time.
Marat Dukhan97579532019-10-18 16:40:39 -0700204 _mm256_storeu_ps(output, vf0);
205 _mm256_storeu_ps(output + 8, vf1);
206 _mm256_storeu_ps(output + 16, vf2);
207 _mm256_storeu_ps(output + 24, vf3);
208 _mm256_storeu_ps(output + 32, vf4);
209 _mm256_storeu_ps(output + 40, vf5);
210 _mm256_storeu_ps(output + 48, vf6);
211 _mm256_storeu_ps(output + 56, vf7);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800212 _mm256_storeu_ps(output + 64, vf8);
213 output += 72;
Marat Dukhan97579532019-10-18 16:40:39 -0700214
215 // Accumulate computed exponents.
216 vacc0 = _mm256_add_ps(vacc0, vf0);
217 vacc1 = _mm256_add_ps(vacc1, vf1);
218 vacc2 = _mm256_add_ps(vacc2, vf2);
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800219 vacc0 = _mm256_add_ps(vacc0, vf3);
220 vacc1 = _mm256_add_ps(vacc1, vf4);
221 vacc2 = _mm256_add_ps(vacc2, vf5);
222 vacc0 = _mm256_add_ps(vacc0, vf6);
223 vacc1 = _mm256_add_ps(vacc1, vf7);
224 vacc2 = _mm256_add_ps(vacc2, vf8);
Marat Dukhan97579532019-10-18 16:40:39 -0700225 }
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800226 // Add up all accumulators to vacc0
227 vacc0 = _mm256_add_ps(vacc0, vacc1);
228 vacc0 = _mm256_add_ps(vacc0, vacc2);
229
230 __m256 vacc = vacc0;
231 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
Marat Dukhan97579532019-10-18 16:40:39 -0700232 // Load 8 inputs at a time.
233 const __m256 vi = _mm256_loadu_ps(input);
234 input += 8;
235
236 // Subtract maximum input x := i - i_max. This implies x <= 0.
237 const __m256 vx = _mm256_sub_ps(vi, vi_max);
238
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800239 // Compute reduced argument elements := round(x / log(2)).
Marat Dukhan97579532019-10-18 16:40:39 -0700240 __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
241
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800242 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
243 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
Marat Dukhan97579532019-10-18 16:40:39 -0700244 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
245
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800246 // Subtract the large number back to get final elements := round(x / log(2)).
Marat Dukhan97579532019-10-18 16:40:39 -0700247 vn = _mm256_sub_ps(vn, vmagic_bias);
248
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800249 // Compute reduced argument t := x - elements * log(2).
Marat Dukhan97579532019-10-18 16:40:39 -0700250 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
251 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
252 vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
253
Marat Dukhan102a7392020-11-20 01:18:10 -0800254 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan97579532019-10-18 16:40:39 -0700255 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
256 vp = _mm256_fmadd_ps(vp, vt, vc3);
257 vp = _mm256_fmadd_ps(vp, vt, vc2);
258 vp = _mm256_fmadd_ps(vp, vt, vc1);
259
260 // Reconstruct the final f value:
261 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
262 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
263 // = s + (t * s) * p
264 vt = _mm256_mul_ps(vt, vs);
265 __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
266
267 // For inputs below zero cutoff, replace output with +0.0f.
268 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
269 vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
270
271 // Store 8 outputs at a time.
272 _mm256_storeu_ps(output, vf);
273 output += 8;
274
275 // Accumulate computed exponents.
276 vacc = _mm256_add_ps(vacc, vf);
277 }
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800278 if (elements != 0) {
279 assert(elements >= 1 * sizeof(float));
280 assert(elements <= 7 * sizeof(float));
281 const __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - elements));
Marat Dukhan97579532019-10-18 16:40:39 -0700282
283 // Load up to 7 inputs at a time.
284 const __m256 vi = _mm256_maskload_ps(input, vmask);
285
286 // Subtract maximum input x := i - i_max. This implies x <= 0.
287 const __m256 vx = _mm256_sub_ps(vi, vi_max);
288
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800289 // Compute reduced argument elements := round(x / log(2)).
Marat Dukhan97579532019-10-18 16:40:39 -0700290 __m256 vn = _mm256_fmadd_ps(vx, vlog2e, vmagic_bias);
291
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800292 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
293 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
Marat Dukhan97579532019-10-18 16:40:39 -0700294 const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
295
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800296 // Subtract the large number back to get final elements := round(x / log(2)).
Marat Dukhan97579532019-10-18 16:40:39 -0700297 vn = _mm256_sub_ps(vn, vmagic_bias);
298
Marat Dukhan4c4eb002019-12-08 21:27:49 -0800299 // Compute reduced argument t := x - elements * log(2).
Marat Dukhan97579532019-10-18 16:40:39 -0700300 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
301 __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vx);
302 vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
303
Marat Dukhan102a7392020-11-20 01:18:10 -0800304 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan97579532019-10-18 16:40:39 -0700305 __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
306 vp = _mm256_fmadd_ps(vp, vt, vc3);
307 vp = _mm256_fmadd_ps(vp, vt, vc2);
308 vp = _mm256_fmadd_ps(vp, vt, vc1);
309
310 // Reconstruct the final f value:
311 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
312 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
313 // = s + (t * s) * p
314 vt = _mm256_mul_ps(vt, vs);
315 __m256 vf = _mm256_fmadd_ps(vt, vp, vs);
316
317 // For inputs below zero cutoff, replace output with +0.0f.
318 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
319 vf = _mm256_andnot_ps(_mm256_cmp_ps(vx, vdenorm_cutoff, _CMP_LT_OS), vf);
320
321 // Store up to 7 outputs at a time.
322 _mm256_maskstore_ps(output, vmask, vf);
323
324 // Accumulate computed exponents. And addend with mask to leave unmasked 32-bit lanes unchanged.
325 vacc = _mm256_add_ps(vacc, _mm256_and_ps(vf, _mm256_castsi256_ps(vmask)));
326 }
327 // Reduce 8 elements in the SIMD register
328 __m128 vacc_lo = _mm_add_ps(_mm256_castps256_ps128(vacc), _mm256_extractf128_ps(vacc, 1));
329 vacc_lo = _mm_add_ps(vacc_lo, _mm_movehl_ps(vacc_lo, vacc_lo));
330 vacc_lo = _mm_add_ss(vacc_lo, _mm_movehdup_ps(vacc_lo));
331 _mm_store_ss(sum, vacc_lo);
332 _mm256_zeroupper();
333}