blob: 9d5915a2055f39ffacf28014d088be175de5f973 [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
20void xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x16_acc2(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070025 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080026{
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.630000p-7f);
35 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.BD0106p-19f);
36
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
38
39 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46 // Load 16 (4x4) inputs at a time.
47 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
51
52 // Subtract maximum input x := i - i_max. This implies x <= 0.
53 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
54 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
55 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
56 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
57
58 // Compute reduced argument n := round(x * 64 / log(2)).
59 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
60 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
61 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
62 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
63 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
64 // algorithm.
65 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e_x64);
66 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e_x64);
67 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
68 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e_x64);
69
70 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
71 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
72 // e := int(n / 64). We create s in two steps:
73 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
74 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
75 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
76 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
77 // and thus the adjusted exponent is not lower than -126.
78 //
79 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
80 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
81 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
82 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
83 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
84
85 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
86 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
87 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
88 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
89 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
90 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
91 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
92 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
93 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
94 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
95 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
96 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
97 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
98
99 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
100 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
101 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
102 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
103 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
104 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
105 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
106 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
107
108 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
109 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
110 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
111 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
112 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
113 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
114 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
115 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
116 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
117 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
118 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
119 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
120
121 // Adjust exponent of the value l fetched from the table to get the final s value.
122 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
123 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
124 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
125 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
126
127 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
128 vn0123 = vsubq_f32(vn0123, vmagic_bias);
129 vn4567 = vsubq_f32(vn4567, vmagic_bias);
130 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
131 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
132
133 // Compute reduced argument t := x - n * log(2) / 64.
134 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
135 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
136 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
137 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
138 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_o64_hi);
139
140 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
141 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
142 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
143 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_o64_lo);
144
Marat Dukhan102a7392020-11-20 01:18:10 -0800145 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800146 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
147 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
148 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
149 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
150
151 vp0123 = vmlaq_f32(vt0123, vt0123, vp0123);
152 vp4567 = vmlaq_f32(vt4567, vt4567, vp4567);
153 vp89AB = vmlaq_f32(vt89AB, vt89AB, vp89AB);
154 vpCDEF = vmlaq_f32(vtCDEF, vtCDEF, vpCDEF);
155
156 // Reconstruct the final f value:
157 // f = s * (1 + t * (1 + t * c2))
158 // = s * (1 + t + t * (t * c2))
159 // = s + s * (t + t * (t * c2))
160 // = s + s * p
161 float32x4_t vf0123 = vmlaq_f32(vs0123, vs0123, vp0123);
162 float32x4_t vf4567 = vmlaq_f32(vs4567, vs4567, vp4567);
163 float32x4_t vf89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
164 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
165
166 // For inputs below denormal cutoff, replace output with +0.0f.
167 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
168 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
169 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
170 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
171 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
172
173 // Store 16 (4x4) outputs at a time.
174 vst1q_f32(output, vf0123); output += 4;
175 vst1q_f32(output, vf4567); output += 4;
176 vst1q_f32(output, vf89AB); output += 4;
177 vst1q_f32(output, vfCDEF); output += 4;
178
179 // Accumulate computed exponents.
180 vacc0 = vaddq_f32(vacc0, vf0123);
181 vacc0 = vaddq_f32(vacc0, vf4567);
182 vacc0 = vaddq_f32(vacc0, vf89AB);
183 vacc0 = vaddq_f32(vacc0, vfCDEF);
184 }
185 // Add up all accumulators to vacc0
186 vacc0 = vaddq_f32(vacc0, vacc1);
187
188 float32x4_t vacc = vacc0;
189 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
190 // Load 4 inputs at a time.
191 const float32x4_t vi = vld1q_f32(input); input += 4;
192
193 // Subtract maximum input x := i - i_max. This implies x <= 0.
194 const float32x4_t vx = vsubq_f32(vi, vi_max);
195
196 // Compute reduced argument n := round(x * 64 / log(2)).
197 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
198 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
199 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
200 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
201 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
202 // algorithm.
203 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
204
205 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
206 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
207 // e := int(n / 64). We create s in two steps:
208 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
209 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
210 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
211 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
212 // and thus the adjusted exponent is not lower than -126.
213 //
214 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
215 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
216
217 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
218 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
219 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
220 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
221 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
222 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
223 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
224 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
225 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
226 // Adjust exponent of the value l fetched from the table to get the final s value.
227 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
228
229 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
230 vn = vsubq_f32(vn, vmagic_bias);
231
232 // Compute reduced argument t := x - n * log(2) / 64.
233 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
234 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
235 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
236
Marat Dukhan102a7392020-11-20 01:18:10 -0800237 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800238 float32x4_t vp = vmulq_f32(vt, vc2);
239 vp = vmlaq_f32(vt, vt, vp);
240
241 // Reconstruct the final f value:
242 // f = s * (1 + t * (1 + t * c2))
243 // = s * (1 + t + t * (t * c2))
244 // = s + s * (t + t * (t * c2))
245 // = s + s * p
246 float32x4_t vf = vmlaq_f32(vs, vs, vp);
247
248 // For inputs below denormal cutoff, replace output with +0.0f.
249 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
250 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
251
252 // Store 4 outputs at a time.
253 vst1q_f32(output, vf); output += 4;
254
255 // Accumulate computed exponents.
256 vacc = vaddq_f32(vacc, vf);
257 }
258#if XNN_ARCH_ARM64
259 float vacc_lo = vaddvq_f32(vacc);
260#else
261 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
262#endif
263 if (elements != 0) {
264 assert(elements >= 1 * sizeof(float));
265 assert(elements <= 3 * sizeof(float));
266 // Load 4 inputs at a time.
267 const float32x4_t vi = vld1q_f32(input); input += 4;
268
269 // Subtract maximum input x := i - i_max. This implies x <= 0.
270 const float32x4_t vx = vsubq_f32(vi, vi_max);
271
272 // Compute reduced argument n := round(x * 64 / log(2)).
273 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
274 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
275 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
276 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
277 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
278 // algorithm.
279 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
280
281 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
282 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
283 // e := int(n / 64). We create s in two steps:
284 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
285 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
286 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
287 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
288 // and thus the adjusted exponent is not lower than -126.
289 //
290 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
291 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
292
293 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
294 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
295 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
296 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
297 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
298 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
299 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
300 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
301 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
302 // Adjust exponent of the value l fetched from the table to get the final s value.
303 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
304
305 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
306 vn = vsubq_f32(vn, vmagic_bias);
307
308 // Compute reduced argument t := x - n * log(2) / 64.
309 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
310 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
311 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
312
Marat Dukhan102a7392020-11-20 01:18:10 -0800313 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800314 float32x4_t vp = vmulq_f32(vt, vc2);
315 vp = vmlaq_f32(vt, vt, vp);
316
317 // Reconstruct the final f value:
318 // f = s * (1 + t * (1 + t * c2))
319 // = s * (1 + t + t * (t * c2))
320 // = s + s * (t + t * (t * c2))
321 // = s + s * p
322 float32x4_t vf = vmlaq_f32(vs, vs, vp);
323
324 // For inputs below denormal cutoff, replace output with +0.0f.
325 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
326 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
327
328 float32x2_t vf_lo = vget_low_f32(vf);
329 if (elements & (2 * sizeof(float))) {
330 // Store 2 outputs at a time.
331 vst1_f32(output, vf_lo); output += 2;
332
333 // Accumulate 2 computed exponents.
334 #if XNN_ARCH_ARM64
335 vacc_lo += vaddv_f32(vf_lo);
336 #else
337 vacc_lo = vadd_f32(vacc_lo, vf_lo);
338 #endif
339
340 vf_lo = vget_high_f32(vf);
341 }
342 if (elements & (1 * sizeof(float))) {
343 // Store 1 output at a time.
344 vst1_lane_f32(output, vf_lo, 0);
345
346 // Accumulate 1 computed exponent.
347 #if XNN_ARCH_ARM64
348 vacc_lo += vget_lane_f32(vf_lo, 0);
349 #else
350 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
351 #endif
352 }
353 }
354 // Reduce 4 elements in the SIMD register
355#if XNN_ARCH_ARM64
356 *sum = vacc_lo;
357#else
358 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
359#endif
360}