blob: b05ba8fe24a53a7e5087025504514206977f9d69 [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
20void xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x20_acc2(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070025 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080026{
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.630000p-7f);
35 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.BD0106p-19f);
36
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
38
39 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
46 // Load 20 (5x4) inputs at a time.
47 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
51 const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
52
53 // Subtract maximum input x := i - i_max. This implies x <= 0.
54 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
55 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
56 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
57 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
58 const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
59
60 // Compute reduced argument n := round(x * 64 / log(2)).
61 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
62 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
63 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
64 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
65 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
66 // algorithm.
67 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e_x64);
68 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e_x64);
69 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
70 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e_x64);
71 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e_x64);
72
73 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
74 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
75 // e := int(n / 64). We create s in two steps:
76 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
77 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
78 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
79 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
80 // and thus the adjusted exponent is not lower than -126.
81 //
82 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
83 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
84 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
85 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
86 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
87 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
88
89 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
90 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
91 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
92 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
93 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
94 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
95 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
96 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
97 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
98 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
99 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
100 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
101 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
102 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
103 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
104 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
105
106 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
107 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
108 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
109 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
110 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
111 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
112 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
113 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
114 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
115 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
116
117 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
118 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
119 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
120 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
121 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
122 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
123 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
124 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
125 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
126 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
127 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
128 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
129 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
130 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
131 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
132
133 // Adjust exponent of the value l fetched from the table to get the final s value.
134 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
135 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
136 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
137 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
138 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
139
140 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
141 vn0123 = vsubq_f32(vn0123, vmagic_bias);
142 vn4567 = vsubq_f32(vn4567, vmagic_bias);
143 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
144 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
145 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
146
147 // Compute reduced argument t := x - n * log(2) / 64.
148 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
149 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
150 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
151 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
152 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_o64_hi);
153 float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_o64_hi);
154
155 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
156 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
157 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
158 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_o64_lo);
159 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_o64_lo);
160
Marat Dukhan102a7392020-11-20 01:18:10 -0800161 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800162 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
163 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
164 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
165 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
166 float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
167
168 vp0123 = vmlaq_f32(vt0123, vt0123, vp0123);
169 vp4567 = vmlaq_f32(vt4567, vt4567, vp4567);
170 vp89AB = vmlaq_f32(vt89AB, vt89AB, vp89AB);
171 vpCDEF = vmlaq_f32(vtCDEF, vtCDEF, vpCDEF);
172 vpGHIJ = vmlaq_f32(vtGHIJ, vtGHIJ, vpGHIJ);
173
174 // Reconstruct the final f value:
175 // f = s * (1 + t * (1 + t * c2))
176 // = s * (1 + t + t * (t * c2))
177 // = s + s * (t + t * (t * c2))
178 // = s + s * p
179 float32x4_t vf0123 = vmlaq_f32(vs0123, vs0123, vp0123);
180 float32x4_t vf4567 = vmlaq_f32(vs4567, vs4567, vp4567);
181 float32x4_t vf89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
182 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
183 float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
184
185 // For inputs below denormal cutoff, replace output with +0.0f.
186 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
187 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
188 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
189 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
190 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
191 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
192
193 // Store 20 (5x4) outputs at a time.
194 vst1q_f32(output, vf0123); output += 4;
195 vst1q_f32(output, vf4567); output += 4;
196 vst1q_f32(output, vf89AB); output += 4;
197 vst1q_f32(output, vfCDEF); output += 4;
198 vst1q_f32(output, vfGHIJ); output += 4;
199
200 // Accumulate computed exponents.
201 vacc0 = vaddq_f32(vacc0, vf0123);
202 vacc0 = vaddq_f32(vacc0, vf4567);
203 vacc0 = vaddq_f32(vacc0, vf89AB);
204 vacc0 = vaddq_f32(vacc0, vfCDEF);
205 vacc0 = vaddq_f32(vacc0, vfGHIJ);
206 }
207 // Add up all accumulators to vacc0
208 vacc0 = vaddq_f32(vacc0, vacc1);
209
210 float32x4_t vacc = vacc0;
211 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
212 // Load 4 inputs at a time.
213 const float32x4_t vi = vld1q_f32(input); input += 4;
214
215 // Subtract maximum input x := i - i_max. This implies x <= 0.
216 const float32x4_t vx = vsubq_f32(vi, vi_max);
217
218 // Compute reduced argument n := round(x * 64 / log(2)).
219 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
220 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
221 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
222 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
223 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
224 // algorithm.
225 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
226
227 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
228 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
229 // e := int(n / 64). We create s in two steps:
230 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
231 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
232 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
233 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
234 // and thus the adjusted exponent is not lower than -126.
235 //
236 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
237 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
238
239 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
240 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
241 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
242 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
243 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
244 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
245 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
246 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
247 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
248 // Adjust exponent of the value l fetched from the table to get the final s value.
249 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
250
251 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
252 vn = vsubq_f32(vn, vmagic_bias);
253
254 // Compute reduced argument t := x - n * log(2) / 64.
255 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
256 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
257 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
258
Marat Dukhan102a7392020-11-20 01:18:10 -0800259 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800260 float32x4_t vp = vmulq_f32(vt, vc2);
261 vp = vmlaq_f32(vt, vt, vp);
262
263 // Reconstruct the final f value:
264 // f = s * (1 + t * (1 + t * c2))
265 // = s * (1 + t + t * (t * c2))
266 // = s + s * (t + t * (t * c2))
267 // = s + s * p
268 float32x4_t vf = vmlaq_f32(vs, vs, vp);
269
270 // For inputs below denormal cutoff, replace output with +0.0f.
271 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
272 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
273
274 // Store 4 outputs at a time.
275 vst1q_f32(output, vf); output += 4;
276
277 // Accumulate computed exponents.
278 vacc = vaddq_f32(vacc, vf);
279 }
280#if XNN_ARCH_ARM64
281 float vacc_lo = vaddvq_f32(vacc);
282#else
283 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
284#endif
285 if (elements != 0) {
286 assert(elements >= 1 * sizeof(float));
287 assert(elements <= 3 * sizeof(float));
288 // Load 4 inputs at a time.
289 const float32x4_t vi = vld1q_f32(input); input += 4;
290
291 // Subtract maximum input x := i - i_max. This implies x <= 0.
292 const float32x4_t vx = vsubq_f32(vi, vi_max);
293
294 // Compute reduced argument n := round(x * 64 / log(2)).
295 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
296 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
297 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
298 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
299 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
300 // algorithm.
301 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
302
303 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
304 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
305 // e := int(n / 64). We create s in two steps:
306 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
307 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
308 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
309 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
310 // and thus the adjusted exponent is not lower than -126.
311 //
312 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
313 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
314
315 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
316 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
317 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
318 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
319 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
320 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
321 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
322 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
323 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
324 // Adjust exponent of the value l fetched from the table to get the final s value.
325 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
326
327 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
328 vn = vsubq_f32(vn, vmagic_bias);
329
330 // Compute reduced argument t := x - n * log(2) / 64.
331 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
332 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
333 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
334
Marat Dukhan102a7392020-11-20 01:18:10 -0800335 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800336 float32x4_t vp = vmulq_f32(vt, vc2);
337 vp = vmlaq_f32(vt, vt, vp);
338
339 // Reconstruct the final f value:
340 // f = s * (1 + t * (1 + t * c2))
341 // = s * (1 + t + t * (t * c2))
342 // = s + s * (t + t * (t * c2))
343 // = s + s * p
344 float32x4_t vf = vmlaq_f32(vs, vs, vp);
345
346 // For inputs below denormal cutoff, replace output with +0.0f.
347 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
348 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
349
350 float32x2_t vf_lo = vget_low_f32(vf);
351 if (elements & (2 * sizeof(float))) {
352 // Store 2 outputs at a time.
353 vst1_f32(output, vf_lo); output += 2;
354
355 // Accumulate 2 computed exponents.
356 #if XNN_ARCH_ARM64
357 vacc_lo += vaddv_f32(vf_lo);
358 #else
359 vacc_lo = vadd_f32(vacc_lo, vf_lo);
360 #endif
361
362 vf_lo = vget_high_f32(vf);
363 }
364 if (elements & (1 * sizeof(float))) {
365 // Store 1 output at a time.
366 vst1_lane_f32(output, vf_lo, 0);
367
368 // Accumulate 1 computed exponent.
369 #if XNN_ARCH_ARM64
370 vacc_lo += vget_lane_f32(vf_lo, 0);
371 #else
372 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
373 #endif
374 }
375 }
376 // Reduce 4 elements in the SIMD register
377#if XNN_ARCH_ARM64
378 *sum = vacc_lo;
379#else
380 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
381#endif
382}