blob: f399db6c31f14da224628a3b61353d81d893cf1f [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
20void xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x20_acc5(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070025 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080026{
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.630000p-7f);
35 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.BD0106p-19f);
36
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
38
39 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 float32x4_t vacc2 = vmovq_n_f32(0.0f);
46 float32x4_t vacc3 = vmovq_n_f32(0.0f);
47 float32x4_t vacc4 = vmovq_n_f32(0.0f);
48 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
49 // Load 20 (5x4) inputs at a time.
50 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
51 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
52 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
53 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
54 const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
55
56 // Subtract maximum input x := i - i_max. This implies x <= 0.
57 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
58 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
59 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
60 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
61 const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
62
63 // Compute reduced argument n := round(x * 64 / log(2)).
64 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
65 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
66 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
67 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
68 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
69 // algorithm.
70 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e_x64);
71 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e_x64);
72 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
73 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e_x64);
74 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e_x64);
75
76 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
77 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
78 // e := int(n / 64). We create s in two steps:
79 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
80 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
81 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
82 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
83 // and thus the adjusted exponent is not lower than -126.
84 //
85 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
86 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
87 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
88 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
89 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
90 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
91
92 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
93 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
94 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
95 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
96 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
97 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
98 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
99 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
100 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
101 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
102 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
103 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
104 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
105 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
106 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
107 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
108
109 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
110 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
111 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
112 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
113 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
114 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
115 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
116 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
117 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
118 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
119
120 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
121 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
122 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
123 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
124 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
125 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
126 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
127 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
128 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
129 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
130 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
131 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
132 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
133 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
134 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
135
136 // Adjust exponent of the value l fetched from the table to get the final s value.
137 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
138 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
139 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
140 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
141 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
142
143 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
144 vn0123 = vsubq_f32(vn0123, vmagic_bias);
145 vn4567 = vsubq_f32(vn4567, vmagic_bias);
146 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
147 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
148 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
149
150 // Compute reduced argument t := x - n * log(2) / 64.
151 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
152 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
153 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
154 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
155 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_o64_hi);
156 float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_o64_hi);
157
158 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
159 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
160 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
161 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_o64_lo);
162 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_o64_lo);
163
Marat Dukhan102a7392020-11-20 01:18:10 -0800164 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800165 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
166 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
167 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
168 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
169 float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
170
171 vp0123 = vmlaq_f32(vt0123, vt0123, vp0123);
172 vp4567 = vmlaq_f32(vt4567, vt4567, vp4567);
173 vp89AB = vmlaq_f32(vt89AB, vt89AB, vp89AB);
174 vpCDEF = vmlaq_f32(vtCDEF, vtCDEF, vpCDEF);
175 vpGHIJ = vmlaq_f32(vtGHIJ, vtGHIJ, vpGHIJ);
176
177 // Reconstruct the final f value:
178 // f = s * (1 + t * (1 + t * c2))
179 // = s * (1 + t + t * (t * c2))
180 // = s + s * (t + t * (t * c2))
181 // = s + s * p
182 float32x4_t vf0123 = vmlaq_f32(vs0123, vs0123, vp0123);
183 float32x4_t vf4567 = vmlaq_f32(vs4567, vs4567, vp4567);
184 float32x4_t vf89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
185 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
186 float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
187
188 // For inputs below denormal cutoff, replace output with +0.0f.
189 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
190 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
191 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
192 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
193 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
194 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
195
196 // Store 20 (5x4) outputs at a time.
197 vst1q_f32(output, vf0123); output += 4;
198 vst1q_f32(output, vf4567); output += 4;
199 vst1q_f32(output, vf89AB); output += 4;
200 vst1q_f32(output, vfCDEF); output += 4;
201 vst1q_f32(output, vfGHIJ); output += 4;
202
203 // Accumulate computed exponents.
204 vacc0 = vaddq_f32(vacc0, vf0123);
205 vacc4 = vaddq_f32(vacc4, vf4567);
206 vacc3 = vaddq_f32(vacc3, vf89AB);
207 vacc2 = vaddq_f32(vacc2, vfCDEF);
208 vacc1 = vaddq_f32(vacc1, vfGHIJ);
209 }
210 // Add up all accumulators to vacc0
211 vacc0 = vaddq_f32(vacc0, vacc1);
212 vacc2 = vaddq_f32(vacc2, vacc3);
213 vacc0 = vaddq_f32(vacc0, vacc2);
214 vacc0 = vaddq_f32(vacc0, vacc4);
215
216 float32x4_t vacc = vacc0;
217 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
218 // Load 4 inputs at a time.
219 const float32x4_t vi = vld1q_f32(input); input += 4;
220
221 // Subtract maximum input x := i - i_max. This implies x <= 0.
222 const float32x4_t vx = vsubq_f32(vi, vi_max);
223
224 // Compute reduced argument n := round(x * 64 / log(2)).
225 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
226 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
227 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
228 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
229 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
230 // algorithm.
231 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
232
233 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
234 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
235 // e := int(n / 64). We create s in two steps:
236 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
237 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
238 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
239 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
240 // and thus the adjusted exponent is not lower than -126.
241 //
242 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
243 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
244
245 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
246 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
247 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
248 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
249 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
250 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
251 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
252 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
253 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
254 // Adjust exponent of the value l fetched from the table to get the final s value.
255 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
256
257 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
258 vn = vsubq_f32(vn, vmagic_bias);
259
260 // Compute reduced argument t := x - n * log(2) / 64.
261 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
262 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
263 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
264
Marat Dukhan102a7392020-11-20 01:18:10 -0800265 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800266 float32x4_t vp = vmulq_f32(vt, vc2);
267 vp = vmlaq_f32(vt, vt, vp);
268
269 // Reconstruct the final f value:
270 // f = s * (1 + t * (1 + t * c2))
271 // = s * (1 + t + t * (t * c2))
272 // = s + s * (t + t * (t * c2))
273 // = s + s * p
274 float32x4_t vf = vmlaq_f32(vs, vs, vp);
275
276 // For inputs below denormal cutoff, replace output with +0.0f.
277 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
278 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
279
280 // Store 4 outputs at a time.
281 vst1q_f32(output, vf); output += 4;
282
283 // Accumulate computed exponents.
284 vacc = vaddq_f32(vacc, vf);
285 }
286#if XNN_ARCH_ARM64
287 float vacc_lo = vaddvq_f32(vacc);
288#else
289 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
290#endif
291 if (elements != 0) {
292 assert(elements >= 1 * sizeof(float));
293 assert(elements <= 3 * sizeof(float));
294 // Load 4 inputs at a time.
295 const float32x4_t vi = vld1q_f32(input); input += 4;
296
297 // Subtract maximum input x := i - i_max. This implies x <= 0.
298 const float32x4_t vx = vsubq_f32(vi, vi_max);
299
300 // Compute reduced argument n := round(x * 64 / log(2)).
301 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
302 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
303 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
304 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
305 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
306 // algorithm.
307 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
308
309 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
310 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
311 // e := int(n / 64). We create s in two steps:
312 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
313 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
314 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
315 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
316 // and thus the adjusted exponent is not lower than -126.
317 //
318 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
319 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
320
321 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
322 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
323 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
324 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
325 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
326 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
327 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
328 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
329 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
330 // Adjust exponent of the value l fetched from the table to get the final s value.
331 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
332
333 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
334 vn = vsubq_f32(vn, vmagic_bias);
335
336 // Compute reduced argument t := x - n * log(2) / 64.
337 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
338 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
339 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
340
Marat Dukhan102a7392020-11-20 01:18:10 -0800341 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800342 float32x4_t vp = vmulq_f32(vt, vc2);
343 vp = vmlaq_f32(vt, vt, vp);
344
345 // Reconstruct the final f value:
346 // f = s * (1 + t * (1 + t * c2))
347 // = s * (1 + t + t * (t * c2))
348 // = s + s * (t + t * (t * c2))
349 // = s + s * p
350 float32x4_t vf = vmlaq_f32(vs, vs, vp);
351
352 // For inputs below denormal cutoff, replace output with +0.0f.
353 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
354 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
355
356 float32x2_t vf_lo = vget_low_f32(vf);
357 if (elements & (2 * sizeof(float))) {
358 // Store 2 outputs at a time.
359 vst1_f32(output, vf_lo); output += 2;
360
361 // Accumulate 2 computed exponents.
362 #if XNN_ARCH_ARM64
363 vacc_lo += vaddv_f32(vf_lo);
364 #else
365 vacc_lo = vadd_f32(vacc_lo, vf_lo);
366 #endif
367
368 vf_lo = vget_high_f32(vf);
369 }
370 if (elements & (1 * sizeof(float))) {
371 // Store 1 output at a time.
372 vst1_lane_f32(output, vf_lo, 0);
373
374 // Accumulate 1 computed exponent.
375 #if XNN_ARCH_ARM64
376 vacc_lo += vget_lane_f32(vf_lo, 0);
377 #else
378 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
379 #endif
380 }
381 }
382 // Reduce 4 elements in the SIMD register
383#if XNN_ARCH_ARM64
384 *sum = vacc_lo;
385#else
386 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
387#endif
388}