blob: 58de4d7a9639c3bf8c6d180477331b10d5b9d08c [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
20void xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x20(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070025 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080026{
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.630000p-7f);
35 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.BD0106p-19f);
36
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
38
39 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
45 // Load 20 (5x4) inputs at a time.
46 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
49 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
50 const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
51
52 // Subtract maximum input x := i - i_max. This implies x <= 0.
53 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
54 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
55 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
56 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
57 const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
58
59 // Compute reduced argument n := round(x * 64 / log(2)).
60 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
61 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
62 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
63 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
64 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
65 // algorithm.
66 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e_x64);
67 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e_x64);
68 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e_x64);
69 float32x4_t vnCDEF = vmlaq_f32(vmagic_bias, vxCDEF, vlog2e_x64);
70 float32x4_t vnGHIJ = vmlaq_f32(vmagic_bias, vxGHIJ, vlog2e_x64);
71
72 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
73 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
74 // e := int(n / 64). We create s in two steps:
75 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
76 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
77 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
78 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
79 // and thus the adjusted exponent is not lower than -126.
80 //
81 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
82 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
83 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
84 const int32x4_t ve89AB = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn89AB), vmovq_n_s32(INT32_C(0x3F))), 17);
85 const int32x4_t veCDEF = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnCDEF), vmovq_n_s32(INT32_C(0x3F))), 17);
86 const int32x4_t veGHIJ = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vnGHIJ), vmovq_n_s32(INT32_C(0x3F))), 17);
87
88 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
89 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
90 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
91 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
92 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
93 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
94 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
95 const uint64x2_t vidx89AB = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn89AB), vindex_mask));
96 const uint64_t vidx89 = vgetq_lane_u64(vidx89AB, 0);
97 const uint64_t vidxAB = vgetq_lane_u64(vidx89AB, 1);
98 const uint64x2_t vidxCDEF = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnCDEF), vindex_mask));
99 const uint64_t vidxCD = vgetq_lane_u64(vidxCDEF, 0);
100 const uint64_t vidxEF = vgetq_lane_u64(vidxCDEF, 1);
101 const uint64x2_t vidxGHIJ = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vnGHIJ), vindex_mask));
102 const uint64_t vidxGH = vgetq_lane_u64(vidxGHIJ, 0);
103 const uint64_t vidxIJ = vgetq_lane_u64(vidxGHIJ, 1);
104
105 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
106 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
107 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
108 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
109 float32x2_t vl89 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx89]);
110 float32x2_t vlAB = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxAB]);
111 float32x2_t vlCD = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxCD]);
112 float32x2_t vlEF = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxEF]);
113 float32x2_t vlGH = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxGH]);
114 float32x2_t vlIJ = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidxIJ]);
115
116 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
117 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
118 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
119 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
120 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
121 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
122 vl89 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx89 >> 32)], vl89, 1);
123 vlAB = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxAB >> 32)], vlAB, 1);
124 const float32x4_t vl89AB = vcombine_f32(vl89, vlAB);
125 vlCD = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxCD >> 32)], vlCD, 1);
126 vlEF = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxEF >> 32)], vlEF, 1);
127 const float32x4_t vlCDEF = vcombine_f32(vlCD, vlEF);
128 vlGH = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxGH >> 32)], vlGH, 1);
129 vlIJ = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidxIJ >> 32)], vlIJ, 1);
130 const float32x4_t vlGHIJ = vcombine_f32(vlGH, vlIJ);
131
132 // Adjust exponent of the value l fetched from the table to get the final s value.
133 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
134 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
135 const float32x4_t vs89AB = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl89AB), ve89AB));
136 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlCDEF), veCDEF));
137 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vlGHIJ), veGHIJ));
138
139 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
140 vn0123 = vsubq_f32(vn0123, vmagic_bias);
141 vn4567 = vsubq_f32(vn4567, vmagic_bias);
142 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
143 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
144 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
145
146 // Compute reduced argument t := x - n * log(2) / 64.
147 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
148 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
149 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
150 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_o64_hi);
151 float32x4_t vtCDEF = vmlaq_f32(vxCDEF, vnCDEF, vminus_ln2_o64_hi);
152 float32x4_t vtGHIJ = vmlaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_o64_hi);
153
154 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
155 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
156 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_o64_lo);
157 vtCDEF = vmlaq_f32(vtCDEF, vnCDEF, vminus_ln2_o64_lo);
158 vtGHIJ = vmlaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_o64_lo);
159
Marat Dukhan102a7392020-11-20 01:18:10 -0800160 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800161 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
162 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
163 float32x4_t vp89AB = vmulq_f32(vt89AB, vc2);
164 float32x4_t vpCDEF = vmulq_f32(vtCDEF, vc2);
165 float32x4_t vpGHIJ = vmulq_f32(vtGHIJ, vc2);
166
167 vp0123 = vmlaq_f32(vt0123, vt0123, vp0123);
168 vp4567 = vmlaq_f32(vt4567, vt4567, vp4567);
169 vp89AB = vmlaq_f32(vt89AB, vt89AB, vp89AB);
170 vpCDEF = vmlaq_f32(vtCDEF, vtCDEF, vpCDEF);
171 vpGHIJ = vmlaq_f32(vtGHIJ, vtGHIJ, vpGHIJ);
172
173 // Reconstruct the final f value:
174 // f = s * (1 + t * (1 + t * c2))
175 // = s * (1 + t + t * (t * c2))
176 // = s + s * (t + t * (t * c2))
177 // = s + s * p
178 float32x4_t vf0123 = vmlaq_f32(vs0123, vs0123, vp0123);
179 float32x4_t vf4567 = vmlaq_f32(vs4567, vs4567, vp4567);
180 float32x4_t vf89AB = vmlaq_f32(vs89AB, vs89AB, vp89AB);
181 float32x4_t vfCDEF = vmlaq_f32(vsCDEF, vsCDEF, vpCDEF);
182 float32x4_t vfGHIJ = vmlaq_f32(vsGHIJ, vsGHIJ, vpGHIJ);
183
184 // For inputs below denormal cutoff, replace output with +0.0f.
185 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
186 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
187 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
188 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
189 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
190 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
191
192 // Store 20 (5x4) outputs at a time.
193 vst1q_f32(output, vf0123); output += 4;
194 vst1q_f32(output, vf4567); output += 4;
195 vst1q_f32(output, vf89AB); output += 4;
196 vst1q_f32(output, vfCDEF); output += 4;
197 vst1q_f32(output, vfGHIJ); output += 4;
198
199 // Accumulate computed exponents.
200 vacc0 = vaddq_f32(vacc0, vf0123);
201 vacc0 = vaddq_f32(vacc0, vf4567);
202 vacc0 = vaddq_f32(vacc0, vf89AB);
203 vacc0 = vaddq_f32(vacc0, vfCDEF);
204 vacc0 = vaddq_f32(vacc0, vfGHIJ);
205 }
206
207 float32x4_t vacc = vacc0;
208 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
209 // Load 4 inputs at a time.
210 const float32x4_t vi = vld1q_f32(input); input += 4;
211
212 // Subtract maximum input x := i - i_max. This implies x <= 0.
213 const float32x4_t vx = vsubq_f32(vi, vi_max);
214
215 // Compute reduced argument n := round(x * 64 / log(2)).
216 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
217 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
218 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
219 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
220 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
221 // algorithm.
222 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
223
224 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
225 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
226 // e := int(n / 64). We create s in two steps:
227 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
228 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
229 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
230 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
231 // and thus the adjusted exponent is not lower than -126.
232 //
233 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
234 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
235
236 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
237 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
238 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
239 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
240 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
241 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
242 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
243 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
244 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
245 // Adjust exponent of the value l fetched from the table to get the final s value.
246 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
247
248 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
249 vn = vsubq_f32(vn, vmagic_bias);
250
251 // Compute reduced argument t := x - n * log(2) / 64.
252 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
253 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
254 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
255
Marat Dukhan102a7392020-11-20 01:18:10 -0800256 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800257 float32x4_t vp = vmulq_f32(vt, vc2);
258 vp = vmlaq_f32(vt, vt, vp);
259
260 // Reconstruct the final f value:
261 // f = s * (1 + t * (1 + t * c2))
262 // = s * (1 + t + t * (t * c2))
263 // = s + s * (t + t * (t * c2))
264 // = s + s * p
265 float32x4_t vf = vmlaq_f32(vs, vs, vp);
266
267 // For inputs below denormal cutoff, replace output with +0.0f.
268 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
269 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
270
271 // Store 4 outputs at a time.
272 vst1q_f32(output, vf); output += 4;
273
274 // Accumulate computed exponents.
275 vacc = vaddq_f32(vacc, vf);
276 }
277#if XNN_ARCH_ARM64
278 float vacc_lo = vaddvq_f32(vacc);
279#else
280 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
281#endif
282 if (elements != 0) {
283 assert(elements >= 1 * sizeof(float));
284 assert(elements <= 3 * sizeof(float));
285 // Load 4 inputs at a time.
286 const float32x4_t vi = vld1q_f32(input); input += 4;
287
288 // Subtract maximum input x := i - i_max. This implies x <= 0.
289 const float32x4_t vx = vsubq_f32(vi, vi_max);
290
291 // Compute reduced argument n := round(x * 64 / log(2)).
292 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
293 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
294 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
295 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
296 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
297 // algorithm.
298 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
299
300 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
301 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
302 // e := int(n / 64). We create s in two steps:
303 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
304 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
305 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
306 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
307 // and thus the adjusted exponent is not lower than -126.
308 //
309 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
310 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
311
312 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
313 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
314 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
315 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
316 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
317 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
318 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
319 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
320 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
321 // Adjust exponent of the value l fetched from the table to get the final s value.
322 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
323
324 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
325 vn = vsubq_f32(vn, vmagic_bias);
326
327 // Compute reduced argument t := x - n * log(2) / 64.
328 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
329 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
330 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
331
Marat Dukhan102a7392020-11-20 01:18:10 -0800332 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800333 float32x4_t vp = vmulq_f32(vt, vc2);
334 vp = vmlaq_f32(vt, vt, vp);
335
336 // Reconstruct the final f value:
337 // f = s * (1 + t * (1 + t * c2))
338 // = s * (1 + t + t * (t * c2))
339 // = s + s * (t + t * (t * c2))
340 // = s + s * p
341 float32x4_t vf = vmlaq_f32(vs, vs, vp);
342
343 // For inputs below denormal cutoff, replace output with +0.0f.
344 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
345 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
346
347 float32x2_t vf_lo = vget_low_f32(vf);
348 if (elements & (2 * sizeof(float))) {
349 // Store 2 outputs at a time.
350 vst1_f32(output, vf_lo); output += 2;
351
352 // Accumulate 2 computed exponents.
353 #if XNN_ARCH_ARM64
354 vacc_lo += vaddv_f32(vf_lo);
355 #else
356 vacc_lo = vadd_f32(vacc_lo, vf_lo);
357 #endif
358
359 vf_lo = vget_high_f32(vf);
360 }
361 if (elements & (1 * sizeof(float))) {
362 // Store 1 output at a time.
363 vst1_lane_f32(output, vf_lo, 0);
364
365 // Accumulate 1 computed exponent.
366 #if XNN_ARCH_ARM64
367 vacc_lo += vget_lane_f32(vf_lo, 0);
368 #else
369 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
370 #endif
371 }
372 }
373 // Reduce 4 elements in the SIMD register
374#if XNN_ARCH_ARM64
375 *sum = vacc_lo;
376#else
377 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
378#endif
379}