blob: 4bed9803f0aa961eac1e53a603db927d2d8c208a [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__neon_p5_x12_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
33 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
34
35 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
37 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
38 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
39 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc0 = vmovq_n_f32(0.0f);
44 float32x4_t vacc1 = vmovq_n_f32(0.0f);
45 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
46 // Load 12 (3x4) inputs at a time.
47 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
48 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
49 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
50
51 // Subtract maximum input x := i - i_max. This implies x <= 0.
52 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
53 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
54 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
55
56 // Compute reduced argument n := round(x / log(2)).
57 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
58 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
60 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
61 // of the algorithm.
62 float32x4_t vn0123 = vmlaq_f32(vmagic_bias, vx0123, vlog2e);
63 float32x4_t vn4567 = vmlaq_f32(vmagic_bias, vx4567, vlog2e);
64 float32x4_t vn89AB = vmlaq_f32(vmagic_bias, vx89AB, vlog2e);
65
66 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
67 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
68 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
69 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
70 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
71
72 // Subtract the large number back to get final n := round(x / log(2)).
73 vn0123 = vsubq_f32(vn0123, vmagic_bias);
74 vn4567 = vsubq_f32(vn4567, vmagic_bias);
75 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
76
77 // Compute reduced argument t := z - n * log(2).
78 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
79 float32x4_t vt0123 = vmlaq_f32(vx0123, vn0123, vminus_ln2_hi);
80 float32x4_t vt4567 = vmlaq_f32(vx4567, vn4567, vminus_ln2_hi);
81 float32x4_t vt89AB = vmlaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
82
83 vt0123 = vmlaq_f32(vt0123, vn0123, vminus_ln2_lo);
84 vt4567 = vmlaq_f32(vt4567, vn4567, vminus_ln2_lo);
85 vt89AB = vmlaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
86
Marat Dukhan102a7392020-11-20 01:18:10 -080087 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -080088 float32x4_t vp0123 = vmlaq_f32(vc4, vc5, vt0123);
89 float32x4_t vp4567 = vmlaq_f32(vc4, vc5, vt4567);
90 float32x4_t vp89AB = vmlaq_f32(vc4, vc5, vt89AB);
91
92 vp0123 = vmlaq_f32(vc3, vp0123, vt0123);
93 vp4567 = vmlaq_f32(vc3, vp4567, vt4567);
94 vp89AB = vmlaq_f32(vc3, vp89AB, vt89AB);
95
96 vp0123 = vmlaq_f32(vc2, vp0123, vt0123);
97 vp4567 = vmlaq_f32(vc2, vp4567, vt4567);
98 vp89AB = vmlaq_f32(vc2, vp89AB, vt89AB);
99
100 vp0123 = vmlaq_f32(vc1, vp0123, vt0123);
101 vp4567 = vmlaq_f32(vc1, vp4567, vt4567);
102 vp89AB = vmlaq_f32(vc1, vp89AB, vt89AB);
103
104 // Reconstruct the final f value:
105 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
106 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
107 // = s + (t * s) * p
108 vt0123 = vmulq_f32(vt0123, vs0123);
109 vt4567 = vmulq_f32(vt4567, vs4567);
110 vt89AB = vmulq_f32(vt89AB, vs89AB);
111
112 float32x4_t vf0123 = vmlaq_f32(vs0123, vp0123, vt0123);
113 float32x4_t vf4567 = vmlaq_f32(vs4567, vp4567, vt4567);
114 float32x4_t vf89AB = vmlaq_f32(vs89AB, vp89AB, vt89AB);
115
116 // For inputs below denormal cutoff, replace output with +0.0f.
117 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
118 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
119 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
120 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
121
122 // Store 12 (3x4) outputs at a time.
123 vst1q_f32(output, vf0123); output += 4;
124 vst1q_f32(output, vf4567); output += 4;
125 vst1q_f32(output, vf89AB); output += 4;
126
127 // Accumulate computed exponents.
128 vacc0 = vaddq_f32(vacc0, vf0123);
129 vacc0 = vaddq_f32(vacc0, vf4567);
130 vacc0 = vaddq_f32(vacc0, vf89AB);
131 }
132 // Add up all accumulators to vacc0
133 vacc0 = vaddq_f32(vacc0, vacc1);
134
135 float32x4_t vacc = vacc0;
136 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
137 // Load 4 inputs at a time.
138 const float32x4_t vi = vld1q_f32(input); input += 4;
139
140 // Subtract maximum input x := i - i_max. This implies x <= 0.
141 const float32x4_t vx = vsubq_f32(vi, vi_max);
142
143 // Compute reduced argument n := round(x / log(2)).
144 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
145 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
146 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
147 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
148 // of the algorithm.
149 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
150
151 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
152 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
153 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
154
155 // Subtract the large number back to get final n := round(x / log(2)).
156 vn = vsubq_f32(vn, vmagic_bias);
157
158 // Compute reduced argument t := z - n * log(2).
159 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
160 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
161 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
162
Marat Dukhan102a7392020-11-20 01:18:10 -0800163 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800164 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
165 vp = vmlaq_f32(vc3, vp, vt);
166 vp = vmlaq_f32(vc2, vp, vt);
167 vp = vmlaq_f32(vc1, vp, vt);
168
169 // Reconstruct the final f value:
170 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
171 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
172 // = s + (t * s) * p
173 vt = vmulq_f32(vt, vs);
174 float32x4_t vf = vmlaq_f32(vs, vp, vt);
175
176 // For inputs below denormal cutoff, replace output with +0.0f.
177 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
178 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
179
180 // Store 4 outputs at a time.
181 vst1q_f32(output, vf); output += 4;
182
183 // Accumulate computed exponents.
184 vacc = vaddq_f32(vacc, vf);
185 }
186#if XNN_ARCH_ARM64
187 float vacc_lo = vaddvq_f32(vacc);
188#else
189 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
190#endif
191 if (elements != 0) {
192 assert(elements >= 1 * sizeof(float));
193 assert(elements <= 3 * sizeof(float));
194 // Load 4 inputs at a time.
195 const float32x4_t vi = vld1q_f32(input); input += 4;
196
197 // Subtract maximum input x := i - i_max. This implies x <= 0.
198 const float32x4_t vx = vsubq_f32(vi, vi_max);
199
200 // Compute reduced argument n := round(x / log(2)).
201 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
202 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
203 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
204 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
205 // of the algorithm.
206 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e);
207
208 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
209 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
210 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
211
212 // Subtract the large number back to get final n := round(x / log(2)).
213 vn = vsubq_f32(vn, vmagic_bias);
214
215 // Compute reduced argument t := z - n * log(2).
216 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
217 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_hi);
218 vt = vmlaq_f32(vt, vn, vminus_ln2_lo);
219
Marat Dukhan102a7392020-11-20 01:18:10 -0800220 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800221 float32x4_t vp = vmlaq_f32(vc4, vc5, vt);
222 vp = vmlaq_f32(vc3, vp, vt);
223 vp = vmlaq_f32(vc2, vp, vt);
224 vp = vmlaq_f32(vc1, vp, vt);
225
226 // Reconstruct the final f value:
227 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
228 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
229 // = s + (t * s) * p
230 vt = vmulq_f32(vt, vs);
231 float32x4_t vf = vmlaq_f32(vs, vp, vt);
232
233 // For inputs below denormal cutoff, replace output with +0.0f.
234 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
235 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
236
237 float32x2_t vf_lo = vget_low_f32(vf);
238 if (elements & (2 * sizeof(float))) {
239 // Store 2 outputs at a time.
240 vst1_f32(output, vf_lo); output += 2;
241
242 // Accumulate 2 computed exponents.
243 #if XNN_ARCH_ARM64
244 vacc_lo += vaddv_f32(vf_lo);
245 #else
246 vacc_lo = vadd_f32(vacc_lo, vf_lo);
247 #endif
248
249 vf_lo = vget_high_f32(vf);
250 }
251 if (elements & (1 * sizeof(float))) {
252 // Store 1 output at a time.
253 vst1_lane_f32(output, vf_lo, 0);
254
255 // Accumulate 1 computed exponent.
256 #if XNN_ARCH_ARM64
257 vacc_lo += vget_lane_f32(vf_lo, 0);
258 #else
259 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
260 #endif
261 }
262 }
263 // Reduce 4 elements in the SIMD register
264#if XNN_ARCH_ARM64
265 *sum = vacc_lo;
266#else
267 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
268#endif
269}