blob: eea9994f46294fe04678267f63ef5fca7d4a81ff [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
20void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_lut64_p2_x8_acc2(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070025 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080026{
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.62e43p-7f);
34 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.05c61p-35f);
35
36 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
37
38 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
45 // Load 8 (2x4) inputs at a time.
46 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
47 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
48
49 // Subtract maximum input x := i - i_max. This implies x <= 0.
50 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
51 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
52
53 // Compute reduced argument n := round(x * 64 / log(2)).
54 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
55 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
56 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
57 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
58 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
59 // algorithm.
60 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e_x64);
61 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e_x64);
62
63 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
64 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
65 // e := int(n / 64). We create s in two steps:
66 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
67 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
68 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
69 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
70 // and thus the adjusted exponent is not lower than -126.
71 //
72 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
73 const int32x4_t ve0123 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn0123), vmovq_n_s32(INT32_C(0x3F))), 17);
74 const int32x4_t ve4567 = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn4567), vmovq_n_s32(INT32_C(0x3F))), 17);
75
76 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
77 const uint64x2_t vidx0123 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn0123), vindex_mask));
78 const uint64_t vidx01 = vgetq_lane_u64(vidx0123, 0);
79 const uint64_t vidx23 = vgetq_lane_u64(vidx0123, 1);
80 const uint64x2_t vidx4567 = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn4567), vindex_mask));
81 const uint64_t vidx45 = vgetq_lane_u64(vidx4567, 0);
82 const uint64_t vidx67 = vgetq_lane_u64(vidx4567, 1);
83
84 float32x2_t vl01 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx01]);
85 float32x2_t vl23 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx23]);
86 float32x2_t vl45 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx45]);
87 float32x2_t vl67 = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx67]);
88
89 vl01 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx01 >> 32)], vl01, 1);
90 vl23 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx23 >> 32)], vl23, 1);
91 const float32x4_t vl0123 = vcombine_f32(vl01, vl23);
92 vl45 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx45 >> 32)], vl45, 1);
93 vl67 = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx67 >> 32)], vl67, 1);
94 const float32x4_t vl4567 = vcombine_f32(vl45, vl67);
95
96 // Adjust exponent of the value l fetched from the table to get the final s value.
97 const float32x4_t vs0123 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl0123), ve0123));
98 const float32x4_t vs4567 = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl4567), ve4567));
99
100 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
101 vn0123 = vsubq_f32(vn0123, vmagic_bias);
102 vn4567 = vsubq_f32(vn4567, vmagic_bias);
103
104 // Compute reduced argument t := x - n * log(2) / 64.
105 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
106 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_o64_hi);
107 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_o64_hi);
108
109 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_o64_lo);
110 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_o64_lo);
111
Marat Dukhan102a7392020-11-20 01:18:10 -0800112 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800113 float32x4_t vp0123 = vmulq_f32(vt0123, vc2);
114 float32x4_t vp4567 = vmulq_f32(vt4567, vc2);
115
116 vp0123 = vfmaq_f32(vt0123, vt0123, vp0123);
117 vp4567 = vfmaq_f32(vt4567, vt4567, vp4567);
118
119 // Reconstruct the final f value:
120 // f = s * (1 + t * (1 + t * c2))
121 // = s * (1 + t + t * (t * c2))
122 // = s + s * (t + t * (t * c2))
123 // = s + s * p
124 float32x4_t vf0123 = vfmaq_f32(vs0123, vs0123, vp0123);
125 float32x4_t vf4567 = vfmaq_f32(vs4567, vs4567, vp4567);
126
127 // For inputs below denormal cutoff, replace output with +0.0f.
128 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
129 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
130 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
131
132 // Store 8 (2x4) outputs at a time.
133 vst1q_f32(output, vf0123); output += 4;
134 vst1q_f32(output, vf4567); output += 4;
135
136 // Accumulate computed exponents.
137 vacc0 = vaddq_f32(vacc0, vf0123);
138 vacc0 = vaddq_f32(vacc0, vf4567);
139 }
140 // Add up all accumulators to vacc0
141 vacc0 = vaddq_f32(vacc0, vacc1);
142
143 float32x4_t vacc = vacc0;
144 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
145 // Load 4 inputs at a time.
146 const float32x4_t vi = vld1q_f32(input); input += 4;
147
148 // Subtract maximum input x := i - i_max. This implies x <= 0.
149 const float32x4_t vx = vsubq_f32(vi, vi_max);
150
151 // Compute reduced argument n := round(x * 64 / log(2)).
152 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
153 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
154 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
155 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
156 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
157 // algorithm.
158 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
159
160 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
161 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
162 // e := int(n / 64). We create s in two steps:
163 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
164 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
165 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
166 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
167 // and thus the adjusted exponent is not lower than -126.
168 //
169 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
170 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
171
172 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
173 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
174 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
175 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
176 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
177 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
178 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
179 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
180 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
181 // Adjust exponent of the value l fetched from the table to get the final s value.
182 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
183
184 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
185 vn = vsubq_f32(vn, vmagic_bias);
186
187 // Compute reduced argument t := x - n * log(2) / 64.
188 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
189 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
190 vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
191
Marat Dukhan102a7392020-11-20 01:18:10 -0800192 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800193 float32x4_t vp = vmulq_f32(vt, vc2);
194 vp = vfmaq_f32(vt, vt, vp);
195
196 // Reconstruct the final f value:
197 // f = s * (1 + t * (1 + t * c2))
198 // = s * (1 + t + t * (t * c2))
199 // = s + s * (t + t * (t * c2))
200 // = s + s * p
201 float32x4_t vf = vfmaq_f32(vs, vs, vp);
202
203 // For inputs below denormal cutoff, replace output with +0.0f.
204 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
205 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
206
207 // Store 4 outputs at a time.
208 vst1q_f32(output, vf); output += 4;
209
210 // Accumulate computed exponents.
211 vacc = vaddq_f32(vacc, vf);
212 }
213#if XNN_ARCH_ARM64
214 float vacc_lo = vaddvq_f32(vacc);
215#else
216 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
217#endif
218 if (elements != 0) {
219 assert(elements >= 1 * sizeof(float));
220 assert(elements <= 3 * sizeof(float));
221 // Load 4 inputs at a time.
222 const float32x4_t vi = vld1q_f32(input); input += 4;
223
224 // Subtract maximum input x := i - i_max. This implies x <= 0.
225 const float32x4_t vx = vsubq_f32(vi, vi_max);
226
227 // Compute reduced argument n := round(x * 64 / log(2)).
228 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
229 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
230 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
231 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
232 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
233 // algorithm.
234 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e_x64);
235
236 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
237 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
238 // e := int(n / 64). We create s in two steps:
239 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
240 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
241 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
242 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
243 // and thus the adjusted exponent is not lower than -126.
244 //
245 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
246 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
247
248 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
249 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
250 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
251 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
252 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
253 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
254 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
255 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
256 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
257 // Adjust exponent of the value l fetched from the table to get the final s value.
258 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
259
260 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
261 vn = vsubq_f32(vn, vmagic_bias);
262
263 // Compute reduced argument t := x - n * log(2) / 64.
264 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
265 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_o64_hi);
266 vt = vfmaq_f32(vt, vn, vminus_ln2_o64_lo);
267
Marat Dukhan102a7392020-11-20 01:18:10 -0800268 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800269 float32x4_t vp = vmulq_f32(vt, vc2);
270 vp = vfmaq_f32(vt, vt, vp);
271
272 // Reconstruct the final f value:
273 // f = s * (1 + t * (1 + t * c2))
274 // = s * (1 + t + t * (t * c2))
275 // = s + s * (t + t * (t * c2))
276 // = s + s * p
277 float32x4_t vf = vfmaq_f32(vs, vs, vp);
278
279 // For inputs below denormal cutoff, replace output with +0.0f.
280 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
281 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
282
283 float32x2_t vf_lo = vget_low_f32(vf);
284 if (elements & (2 * sizeof(float))) {
285 // Store 2 outputs at a time.
286 vst1_f32(output, vf_lo); output += 2;
287
288 // Accumulate 2 computed exponents.
289 #if XNN_ARCH_ARM64
290 vacc_lo += vaddv_f32(vf_lo);
291 #else
292 vacc_lo = vadd_f32(vacc_lo, vf_lo);
293 #endif
294
295 vf_lo = vget_high_f32(vf);
296 }
297 if (elements & (1 * sizeof(float))) {
298 // Store 1 output at a time.
299 vst1_lane_f32(output, vf_lo, 0);
300
301 // Accumulate 1 computed exponent.
302 #if XNN_ARCH_ARM64
303 vacc_lo += vget_lane_f32(vf_lo, 0);
304 #else
305 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
306 #endif
307 }
308 }
309 // Reduce 4 elements in the SIMD register
310#if XNN_ARCH_ARM64
311 *sum = vacc_lo;
312#else
313 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
314#endif
315}