blob: f53dadecbc9a1aa9adcbc309d7567f8eee1dc268 [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x16_acc4(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33
34 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 float32x4_t vacc2 = vmovq_n_f32(0.0f);
45 float32x4_t vacc3 = vmovq_n_f32(0.0f);
46 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
47 // Load 16 (4x4) inputs at a time.
48 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
49 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
50 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
51 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
52
53 // Subtract maximum input x := i - i_max. This implies x <= 0.
54 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
55 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
56 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
57 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
58
59 // Compute reduced argument n := round(x / log(2)).
60 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
61 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
62 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
63 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
64 // of the algorithm.
65 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
66 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
67 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
68 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vxCDEF, vlog2e);
69
70 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
71 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
72 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
73 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
74 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
75 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
76
77 // Subtract the large number back to get final n := round(x / log(2)).
78 vn0123 = vsubq_f32(vn0123, vmagic_bias);
79 vn4567 = vsubq_f32(vn4567, vmagic_bias);
80 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
81 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
82
83 // Compute reduced argument t := z - n * log(2).
84 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
85 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
86 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
87 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
88 float32x4_t vtCDEF = vfmaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
89
90 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
91 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
92 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
93 vtCDEF = vfmaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
94
Marat Dukhan102a7392020-11-20 01:18:10 -080095 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -080096 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
97 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
98 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
99 float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
100
101 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
102 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
103 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
104 vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
105
106 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
107 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
108 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
109 vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
110
111 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
112 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
113 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
114 vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
115
116 // Reconstruct the final f value:
117 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
118 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
119 // = s + (t * s) * p
120 vt0123 = vmulq_f32(vt0123, vs0123);
121 vt4567 = vmulq_f32(vt4567, vs4567);
122 vt89AB = vmulq_f32(vt89AB, vs89AB);
123 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
124
125 float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
126 float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
127 float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
128 float32x4_t vfCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
129
130 // For inputs below denormal cutoff, replace output with +0.0f.
131 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
132 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
133 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
134 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
135 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
136
137 // Store 16 (4x4) outputs at a time.
138 vst1q_f32(output, vf0123); output += 4;
139 vst1q_f32(output, vf4567); output += 4;
140 vst1q_f32(output, vf89AB); output += 4;
141 vst1q_f32(output, vfCDEF); output += 4;
142
143 // Accumulate computed exponents.
144 vacc0 = vaddq_f32(vacc0, vf0123);
145 vacc0 = vaddq_f32(vacc0, vf4567);
146 vacc0 = vaddq_f32(vacc0, vf89AB);
147 vacc0 = vaddq_f32(vacc0, vfCDEF);
148 }
149 // Add up all accumulators to vacc0
150 vacc0 = vaddq_f32(vacc0, vacc1);
151 vacc2 = vaddq_f32(vacc2, vacc3);
152 vacc0 = vaddq_f32(vacc0, vacc2);
153
154 float32x4_t vacc = vacc0;
155 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
156 // Load 4 inputs at a time.
157 const float32x4_t vi = vld1q_f32(input); input += 4;
158
159 // Subtract maximum input x := i - i_max. This implies x <= 0.
160 const float32x4_t vx = vsubq_f32(vi, vi_max);
161
162 // Compute reduced argument n := round(x / log(2)).
163 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
164 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
165 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
166 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
167 // of the algorithm.
168 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
169
170 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
171 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
172 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
173
174 // Subtract the large number back to get final n := round(x / log(2)).
175 vn = vsubq_f32(vn, vmagic_bias);
176
177 // Compute reduced argument t := z - n * log(2).
178 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
179 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
180 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
181
Marat Dukhan102a7392020-11-20 01:18:10 -0800182 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800183 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
184 vp = vfmaq_f32(vc3, vp, vt);
185 vp = vfmaq_f32(vc2, vp, vt);
186 vp = vfmaq_f32(vc1, vp, vt);
187
188 // Reconstruct the final f value:
189 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
190 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
191 // = s + (t * s) * p
192 vt = vmulq_f32(vt, vs);
193 float32x4_t vf = vfmaq_f32(vs, vp, vt);
194
195 // For inputs below denormal cutoff, replace output with +0.0f.
196 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
197 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
198
199 // Store 4 outputs at a time.
200 vst1q_f32(output, vf); output += 4;
201
202 // Accumulate computed exponents.
203 vacc = vaddq_f32(vacc, vf);
204 }
205#if XNN_ARCH_ARM64
206 float vacc_lo = vaddvq_f32(vacc);
207#else
208 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
209#endif
210 if (elements != 0) {
211 assert(elements >= 1 * sizeof(float));
212 assert(elements <= 3 * sizeof(float));
213 // Load 4 inputs at a time.
214 const float32x4_t vi = vld1q_f32(input); input += 4;
215
216 // Subtract maximum input x := i - i_max. This implies x <= 0.
217 const float32x4_t vx = vsubq_f32(vi, vi_max);
218
219 // Compute reduced argument n := round(x / log(2)).
220 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
221 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
222 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
223 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
224 // of the algorithm.
225 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
226
227 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
228 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
229 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
230
231 // Subtract the large number back to get final n := round(x / log(2)).
232 vn = vsubq_f32(vn, vmagic_bias);
233
234 // Compute reduced argument t := z - n * log(2).
235 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
236 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
237 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
238
Marat Dukhan102a7392020-11-20 01:18:10 -0800239 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800240 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
241 vp = vfmaq_f32(vc3, vp, vt);
242 vp = vfmaq_f32(vc2, vp, vt);
243 vp = vfmaq_f32(vc1, vp, vt);
244
245 // Reconstruct the final f value:
246 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
247 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
248 // = s + (t * s) * p
249 vt = vmulq_f32(vt, vs);
250 float32x4_t vf = vfmaq_f32(vs, vp, vt);
251
252 // For inputs below denormal cutoff, replace output with +0.0f.
253 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
254 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
255
256 float32x2_t vf_lo = vget_low_f32(vf);
257 if (elements & (2 * sizeof(float))) {
258 // Store 2 outputs at a time.
259 vst1_f32(output, vf_lo); output += 2;
260
261 // Accumulate 2 computed exponents.
262 #if XNN_ARCH_ARM64
263 vacc_lo += vaddv_f32(vf_lo);
264 #else
265 vacc_lo = vadd_f32(vacc_lo, vf_lo);
266 #endif
267
268 vf_lo = vget_high_f32(vf);
269 }
270 if (elements & (1 * sizeof(float))) {
271 // Store 1 output at a time.
272 vst1_lane_f32(output, vf_lo, 0);
273
274 // Accumulate 1 computed exponent.
275 #if XNN_ARCH_ARM64
276 vacc_lo += vget_lane_f32(vf_lo, 0);
277 #else
278 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
279 #endif
280 }
281 }
282 // Reduce 4 elements in the SIMD register
283#if XNN_ARCH_ARM64
284 *sum = vacc_lo;
285#else
286 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
287#endif
288}