blob: 20f8403e18bc8fe75baa6510366aa27ac926d7bd [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x16(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33
34 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
44 // Load 16 (4x4) inputs at a time.
45 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
46 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
47 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
48 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
52 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
53 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
54 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
55
56 // Compute reduced argument n := round(x / log(2)).
57 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
58 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
59 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
60 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
61 // of the algorithm.
62 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
63 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
64 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
65 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vxCDEF, vlog2e);
66
67 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
68 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
69 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
70 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
71 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
72 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
73
74 // Subtract the large number back to get final n := round(x / log(2)).
75 vn0123 = vsubq_f32(vn0123, vmagic_bias);
76 vn4567 = vsubq_f32(vn4567, vmagic_bias);
77 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
78 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
79
80 // Compute reduced argument t := z - n * log(2).
81 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
82 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
83 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
84 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
85 float32x4_t vtCDEF = vfmaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
86
87 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
88 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
89 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
90 vtCDEF = vfmaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
91
Marat Dukhan102a7392020-11-20 01:18:10 -080092 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -080093 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
94 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
95 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
96 float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
97
98 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
99 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
100 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
101 vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
102
103 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
104 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
105 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
106 vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
107
108 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
109 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
110 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
111 vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
112
113 // Reconstruct the final f value:
114 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
115 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
116 // = s + (t * s) * p
117 vt0123 = vmulq_f32(vt0123, vs0123);
118 vt4567 = vmulq_f32(vt4567, vs4567);
119 vt89AB = vmulq_f32(vt89AB, vs89AB);
120 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
121
122 float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
123 float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
124 float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
125 float32x4_t vfCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
126
127 // For inputs below denormal cutoff, replace output with +0.0f.
128 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
129 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
130 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
131 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
132 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
133
134 // Store 16 (4x4) outputs at a time.
135 vst1q_f32(output, vf0123); output += 4;
136 vst1q_f32(output, vf4567); output += 4;
137 vst1q_f32(output, vf89AB); output += 4;
138 vst1q_f32(output, vfCDEF); output += 4;
139
140 // Accumulate computed exponents.
141 vacc0 = vaddq_f32(vacc0, vf0123);
142 vacc0 = vaddq_f32(vacc0, vf4567);
143 vacc0 = vaddq_f32(vacc0, vf89AB);
144 vacc0 = vaddq_f32(vacc0, vfCDEF);
145 }
146
147 float32x4_t vacc = vacc0;
148 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
149 // Load 4 inputs at a time.
150 const float32x4_t vi = vld1q_f32(input); input += 4;
151
152 // Subtract maximum input x := i - i_max. This implies x <= 0.
153 const float32x4_t vx = vsubq_f32(vi, vi_max);
154
155 // Compute reduced argument n := round(x / log(2)).
156 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
157 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
158 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
159 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
160 // of the algorithm.
161 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
162
163 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
164 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
165 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
166
167 // Subtract the large number back to get final n := round(x / log(2)).
168 vn = vsubq_f32(vn, vmagic_bias);
169
170 // Compute reduced argument t := z - n * log(2).
171 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
172 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
173 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
174
Marat Dukhan102a7392020-11-20 01:18:10 -0800175 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800176 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
177 vp = vfmaq_f32(vc3, vp, vt);
178 vp = vfmaq_f32(vc2, vp, vt);
179 vp = vfmaq_f32(vc1, vp, vt);
180
181 // Reconstruct the final f value:
182 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
183 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
184 // = s + (t * s) * p
185 vt = vmulq_f32(vt, vs);
186 float32x4_t vf = vfmaq_f32(vs, vp, vt);
187
188 // For inputs below denormal cutoff, replace output with +0.0f.
189 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
190 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
191
192 // Store 4 outputs at a time.
193 vst1q_f32(output, vf); output += 4;
194
195 // Accumulate computed exponents.
196 vacc = vaddq_f32(vacc, vf);
197 }
198#if XNN_ARCH_ARM64
199 float vacc_lo = vaddvq_f32(vacc);
200#else
201 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
202#endif
203 if (elements != 0) {
204 assert(elements >= 1 * sizeof(float));
205 assert(elements <= 3 * sizeof(float));
206 // Load 4 inputs at a time.
207 const float32x4_t vi = vld1q_f32(input); input += 4;
208
209 // Subtract maximum input x := i - i_max. This implies x <= 0.
210 const float32x4_t vx = vsubq_f32(vi, vi_max);
211
212 // Compute reduced argument n := round(x / log(2)).
213 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
214 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
215 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
216 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
217 // of the algorithm.
218 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
219
220 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
221 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
222 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
223
224 // Subtract the large number back to get final n := round(x / log(2)).
225 vn = vsubq_f32(vn, vmagic_bias);
226
227 // Compute reduced argument t := z - n * log(2).
228 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
229 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
230 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
231
Marat Dukhan102a7392020-11-20 01:18:10 -0800232 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800233 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
234 vp = vfmaq_f32(vc3, vp, vt);
235 vp = vfmaq_f32(vc2, vp, vt);
236 vp = vfmaq_f32(vc1, vp, vt);
237
238 // Reconstruct the final f value:
239 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
240 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
241 // = s + (t * s) * p
242 vt = vmulq_f32(vt, vs);
243 float32x4_t vf = vfmaq_f32(vs, vp, vt);
244
245 // For inputs below denormal cutoff, replace output with +0.0f.
246 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
247 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
248
249 float32x2_t vf_lo = vget_low_f32(vf);
250 if (elements & (2 * sizeof(float))) {
251 // Store 2 outputs at a time.
252 vst1_f32(output, vf_lo); output += 2;
253
254 // Accumulate 2 computed exponents.
255 #if XNN_ARCH_ARM64
256 vacc_lo += vaddv_f32(vf_lo);
257 #else
258 vacc_lo = vadd_f32(vacc_lo, vf_lo);
259 #endif
260
261 vf_lo = vget_high_f32(vf);
262 }
263 if (elements & (1 * sizeof(float))) {
264 // Store 1 output at a time.
265 vst1_lane_f32(output, vf_lo, 0);
266
267 // Accumulate 1 computed exponent.
268 #if XNN_ARCH_ARM64
269 vacc_lo += vget_lane_f32(vf_lo, 0);
270 #else
271 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
272 #endif
273 }
274 }
275 // Reduce 4 elements in the SIMD register
276#if XNN_ARCH_ARM64
277 *sum = vacc_lo;
278#else
279 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
280#endif
281}