blob: 83ba38cc383ed32feef759a13af1af11f50bc7c0 [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__neonfma_p5_x20_acc5(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhan8137e4c2020-01-25 12:56:58 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
30 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
31 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
32 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
33
34 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
35 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
36 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
37 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
38 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
39
40 const float32x4_t vi_max = vdupq_n_f32(max);
41
42 float32x4_t vacc0 = vmovq_n_f32(0.0f);
43 float32x4_t vacc1 = vmovq_n_f32(0.0f);
44 float32x4_t vacc2 = vmovq_n_f32(0.0f);
45 float32x4_t vacc3 = vmovq_n_f32(0.0f);
46 float32x4_t vacc4 = vmovq_n_f32(0.0f);
47 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
48 // Load 20 (5x4) inputs at a time.
49 const float32x4_t vi0123 = vld1q_f32(input); input += 4;
50 const float32x4_t vi4567 = vld1q_f32(input); input += 4;
51 const float32x4_t vi89AB = vld1q_f32(input); input += 4;
52 const float32x4_t viCDEF = vld1q_f32(input); input += 4;
53 const float32x4_t viGHIJ = vld1q_f32(input); input += 4;
54
55 // Subtract maximum input x := i - i_max. This implies x <= 0.
56 const float32x4_t vx0123 = vsubq_f32(vi0123, vi_max);
57 const float32x4_t vx4567 = vsubq_f32(vi4567, vi_max);
58 const float32x4_t vx89AB = vsubq_f32(vi89AB, vi_max);
59 const float32x4_t vxCDEF = vsubq_f32(viCDEF, vi_max);
60 const float32x4_t vxGHIJ = vsubq_f32(viGHIJ, vi_max);
61
62 // Compute reduced argument n := round(x / log(2)).
63 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
64 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
65 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
66 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
67 // of the algorithm.
68 float32x4_t vn0123 = vfmaq_f32(vmagic_bias, vx0123, vlog2e);
69 float32x4_t vn4567 = vfmaq_f32(vmagic_bias, vx4567, vlog2e);
70 float32x4_t vn89AB = vfmaq_f32(vmagic_bias, vx89AB, vlog2e);
71 float32x4_t vnCDEF = vfmaq_f32(vmagic_bias, vxCDEF, vlog2e);
72 float32x4_t vnGHIJ = vfmaq_f32(vmagic_bias, vxGHIJ, vlog2e);
73
74 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
75 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
76 const float32x4_t vs0123 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn0123), 23));
77 const float32x4_t vs4567 = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn4567), 23));
78 const float32x4_t vs89AB = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn89AB), 23));
79 const float32x4_t vsCDEF = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnCDEF), 23));
80 const float32x4_t vsGHIJ = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vnGHIJ), 23));
81
82 // Subtract the large number back to get final n := round(x / log(2)).
83 vn0123 = vsubq_f32(vn0123, vmagic_bias);
84 vn4567 = vsubq_f32(vn4567, vmagic_bias);
85 vn89AB = vsubq_f32(vn89AB, vmagic_bias);
86 vnCDEF = vsubq_f32(vnCDEF, vmagic_bias);
87 vnGHIJ = vsubq_f32(vnGHIJ, vmagic_bias);
88
89 // Compute reduced argument t := z - n * log(2).
90 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
91 float32x4_t vt0123 = vfmaq_f32(vx0123, vn0123, vminus_ln2_hi);
92 float32x4_t vt4567 = vfmaq_f32(vx4567, vn4567, vminus_ln2_hi);
93 float32x4_t vt89AB = vfmaq_f32(vx89AB, vn89AB, vminus_ln2_hi);
94 float32x4_t vtCDEF = vfmaq_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
95 float32x4_t vtGHIJ = vfmaq_f32(vxGHIJ, vnGHIJ, vminus_ln2_hi);
96
97 vt0123 = vfmaq_f32(vt0123, vn0123, vminus_ln2_lo);
98 vt4567 = vfmaq_f32(vt4567, vn4567, vminus_ln2_lo);
99 vt89AB = vfmaq_f32(vt89AB, vn89AB, vminus_ln2_lo);
100 vtCDEF = vfmaq_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
101 vtGHIJ = vfmaq_f32(vtGHIJ, vnGHIJ, vminus_ln2_lo);
102
Marat Dukhan102a7392020-11-20 01:18:10 -0800103 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800104 float32x4_t vp0123 = vfmaq_f32(vc4, vc5, vt0123);
105 float32x4_t vp4567 = vfmaq_f32(vc4, vc5, vt4567);
106 float32x4_t vp89AB = vfmaq_f32(vc4, vc5, vt89AB);
107 float32x4_t vpCDEF = vfmaq_f32(vc4, vc5, vtCDEF);
108 float32x4_t vpGHIJ = vfmaq_f32(vc4, vc5, vtGHIJ);
109
110 vp0123 = vfmaq_f32(vc3, vp0123, vt0123);
111 vp4567 = vfmaq_f32(vc3, vp4567, vt4567);
112 vp89AB = vfmaq_f32(vc3, vp89AB, vt89AB);
113 vpCDEF = vfmaq_f32(vc3, vpCDEF, vtCDEF);
114 vpGHIJ = vfmaq_f32(vc3, vpGHIJ, vtGHIJ);
115
116 vp0123 = vfmaq_f32(vc2, vp0123, vt0123);
117 vp4567 = vfmaq_f32(vc2, vp4567, vt4567);
118 vp89AB = vfmaq_f32(vc2, vp89AB, vt89AB);
119 vpCDEF = vfmaq_f32(vc2, vpCDEF, vtCDEF);
120 vpGHIJ = vfmaq_f32(vc2, vpGHIJ, vtGHIJ);
121
122 vp0123 = vfmaq_f32(vc1, vp0123, vt0123);
123 vp4567 = vfmaq_f32(vc1, vp4567, vt4567);
124 vp89AB = vfmaq_f32(vc1, vp89AB, vt89AB);
125 vpCDEF = vfmaq_f32(vc1, vpCDEF, vtCDEF);
126 vpGHIJ = vfmaq_f32(vc1, vpGHIJ, vtGHIJ);
127
128 // Reconstruct the final f value:
129 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
130 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
131 // = s + (t * s) * p
132 vt0123 = vmulq_f32(vt0123, vs0123);
133 vt4567 = vmulq_f32(vt4567, vs4567);
134 vt89AB = vmulq_f32(vt89AB, vs89AB);
135 vtCDEF = vmulq_f32(vtCDEF, vsCDEF);
136 vtGHIJ = vmulq_f32(vtGHIJ, vsGHIJ);
137
138 float32x4_t vf0123 = vfmaq_f32(vs0123, vp0123, vt0123);
139 float32x4_t vf4567 = vfmaq_f32(vs4567, vp4567, vt4567);
140 float32x4_t vf89AB = vfmaq_f32(vs89AB, vp89AB, vt89AB);
141 float32x4_t vfCDEF = vfmaq_f32(vsCDEF, vpCDEF, vtCDEF);
142 float32x4_t vfGHIJ = vfmaq_f32(vsGHIJ, vpGHIJ, vtGHIJ);
143
144 // For inputs below denormal cutoff, replace output with +0.0f.
145 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
146 vf0123 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf0123), vcltq_f32(vx0123, vdenorm_cutoff)));
147 vf4567 = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf4567), vcltq_f32(vx4567, vdenorm_cutoff)));
148 vf89AB = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf89AB), vcltq_f32(vx89AB, vdenorm_cutoff)));
149 vfCDEF = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfCDEF), vcltq_f32(vxCDEF, vdenorm_cutoff)));
150 vfGHIJ = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vfGHIJ), vcltq_f32(vxGHIJ, vdenorm_cutoff)));
151
152 // Store 20 (5x4) outputs at a time.
153 vst1q_f32(output, vf0123); output += 4;
154 vst1q_f32(output, vf4567); output += 4;
155 vst1q_f32(output, vf89AB); output += 4;
156 vst1q_f32(output, vfCDEF); output += 4;
157 vst1q_f32(output, vfGHIJ); output += 4;
158
159 // Accumulate computed exponents.
160 vacc0 = vaddq_f32(vacc0, vf0123);
161 vacc4 = vaddq_f32(vacc4, vf4567);
162 vacc3 = vaddq_f32(vacc3, vf89AB);
163 vacc2 = vaddq_f32(vacc2, vfCDEF);
164 vacc1 = vaddq_f32(vacc1, vfGHIJ);
165 }
166 // Add up all accumulators to vacc0
167 vacc0 = vaddq_f32(vacc0, vacc1);
168 vacc2 = vaddq_f32(vacc2, vacc3);
169 vacc0 = vaddq_f32(vacc0, vacc2);
170 vacc0 = vaddq_f32(vacc0, vacc4);
171
172 float32x4_t vacc = vacc0;
173 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
174 // Load 4 inputs at a time.
175 const float32x4_t vi = vld1q_f32(input); input += 4;
176
177 // Subtract maximum input x := i - i_max. This implies x <= 0.
178 const float32x4_t vx = vsubq_f32(vi, vi_max);
179
180 // Compute reduced argument n := round(x / log(2)).
181 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
182 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
183 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
184 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
185 // of the algorithm.
186 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
187
188 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
189 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
190 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
191
192 // Subtract the large number back to get final n := round(x / log(2)).
193 vn = vsubq_f32(vn, vmagic_bias);
194
195 // Compute reduced argument t := z - n * log(2).
196 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
197 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
198 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
199
Marat Dukhan102a7392020-11-20 01:18:10 -0800200 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800201 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
202 vp = vfmaq_f32(vc3, vp, vt);
203 vp = vfmaq_f32(vc2, vp, vt);
204 vp = vfmaq_f32(vc1, vp, vt);
205
206 // Reconstruct the final f value:
207 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
208 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
209 // = s + (t * s) * p
210 vt = vmulq_f32(vt, vs);
211 float32x4_t vf = vfmaq_f32(vs, vp, vt);
212
213 // For inputs below denormal cutoff, replace output with +0.0f.
214 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
215 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
216
217 // Store 4 outputs at a time.
218 vst1q_f32(output, vf); output += 4;
219
220 // Accumulate computed exponents.
221 vacc = vaddq_f32(vacc, vf);
222 }
223#if XNN_ARCH_ARM64
224 float vacc_lo = vaddvq_f32(vacc);
225#else
226 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
227#endif
228 if (elements != 0) {
229 assert(elements >= 1 * sizeof(float));
230 assert(elements <= 3 * sizeof(float));
231 // Load 4 inputs at a time.
232 const float32x4_t vi = vld1q_f32(input); input += 4;
233
234 // Subtract maximum input x := i - i_max. This implies x <= 0.
235 const float32x4_t vx = vsubq_f32(vi, vi_max);
236
237 // Compute reduced argument n := round(x / log(2)).
238 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
239 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
240 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
241 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
242 // of the algorithm.
243 float32x4_t vn = vfmaq_f32(vmagic_bias, vx, vlog2e);
244
245 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
246 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
247 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
248
249 // Subtract the large number back to get final n := round(x / log(2)).
250 vn = vsubq_f32(vn, vmagic_bias);
251
252 // Compute reduced argument t := z - n * log(2).
253 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
254 float32x4_t vt = vfmaq_f32(vx, vn, vminus_ln2_hi);
255 vt = vfmaq_f32(vt, vn, vminus_ln2_lo);
256
Marat Dukhan102a7392020-11-20 01:18:10 -0800257 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800258 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
259 vp = vfmaq_f32(vc3, vp, vt);
260 vp = vfmaq_f32(vc2, vp, vt);
261 vp = vfmaq_f32(vc1, vp, vt);
262
263 // Reconstruct the final f value:
264 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
265 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
266 // = s + (t * s) * p
267 vt = vmulq_f32(vt, vs);
268 float32x4_t vf = vfmaq_f32(vs, vp, vt);
269
270 // For inputs below denormal cutoff, replace output with +0.0f.
271 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
272 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
273
274 float32x2_t vf_lo = vget_low_f32(vf);
275 if (elements & (2 * sizeof(float))) {
276 // Store 2 outputs at a time.
277 vst1_f32(output, vf_lo); output += 2;
278
279 // Accumulate 2 computed exponents.
280 #if XNN_ARCH_ARM64
281 vacc_lo += vaddv_f32(vf_lo);
282 #else
283 vacc_lo = vadd_f32(vacc_lo, vf_lo);
284 #endif
285
286 vf_lo = vget_high_f32(vf);
287 }
288 if (elements & (1 * sizeof(float))) {
289 // Store 1 output at a time.
290 vst1_lane_f32(output, vf_lo, 0);
291
292 // Accumulate 1 computed exponent.
293 #if XNN_ARCH_ARM64
294 vacc_lo += vget_lane_f32(vf_lo, 0);
295 #else
296 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
297 #endif
298 }
299 }
300 // Reduce 4 elements in the SIMD register
301#if XNN_ARCH_ARM64
302 *sum = vacc_lo;
303#else
304 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
305#endif
306}