blob: 374b1e132046c53ac8c65513ebd4557f84d02244 [file] [log] [blame]
Marat Dukhanf46f6752020-01-21 11:03:49 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/scalar-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <xnnpack/common.h>
13#include <xnnpack/raddstoreexpminusmax.h>
14
15#include <fp16/bitcasts.h>
16
17
18// Note redefine as uint32[] to avoid redundant bitcasts.
19extern XNN_INTERNAL const uint32_t xnn_table_exp2_k_over_64[64];
20
21void xnn_f32_raddstoreexpminusmax_ukernel__scalar_lut64_p2_x2_acc2(
22 size_t elements,
23 const float* input,
24 float* output,
25 float* sum,
26 float vi_max)
27{
28 assert(elements % sizeof(float) == 0);
29
30 const float vmagic_bias = 0x1.800000p23f;
31 // The smallest x for which expf(x) is normalized.
32 const float vdenorm_cutoff = -0x1.5D589Ep6f;
33 const float vlog2e_x64 = 0x1.715476p6f;
34 // Last 13 bits are zeroes
35 const float vminus_ln2_o64_hi = -0x1.630000p-7f;
36 const float vminus_ln2_o64_lo = 0x1.BD0106p-19f;
37
38 const float vc2 = 0x1.FFFF0Ap-2f;
39
40 const uint32_t vindex_mask = UINT32_C(0x3F);
41
42 float vacc0 = 0.0f;
43 float vacc1 = 0.0f;
44 for (; elements >= 2 * sizeof(float); elements -= 2 * sizeof(float)) {
45 // Load 2 inputs at a time.
46 const float vi0 = input[0];
47 const float vi1 = input[1];
48 input += 2;
49
50 // Subtract maximum input x := i - i_max. This implies x <= 0.
51 const float vx0 = vi0 - vi_max;
52 const float vx1 = vi1 - vi_max;
53
54 // Compute reduced argument n := round(x * 64 / log(2)).
55 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
56 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
57 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
58 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
59 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
60 // algorithm.
61 float vn0 = vx0 * vlog2e_x64 + vmagic_bias;
62 float vn1 = vx1 * vlog2e_x64 + vmagic_bias;
63
64 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
65 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
66 // e := int(n / 64). We create s in two steps:
67 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
68 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
69 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
70 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
71 // and thus the adjusted exponent is not lower than -126.
72 //
73 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
74 const uint32_t ve0 = (fp32_to_bits(vn0) & UINT32_C(0xFFFFFFC0)) << 17;
75 const uint32_t ve1 = (fp32_to_bits(vn1) & UINT32_C(0xFFFFFFC0)) << 17;
76
77 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
78 const uint32_t vidx0 = fp32_to_bits(vn0) & vindex_mask;
79 const uint32_t vidx1 = fp32_to_bits(vn1) & vindex_mask;
80 // Adjust exponent of the value l fetched from the table to get the final s value.
81 const float vs0 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx0] + ve0);
82 const float vs1 = fp32_from_bits(xnn_table_exp2_k_over_64[vidx1] + ve1);
83
84 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
85 vn0 -= vmagic_bias;
86 vn1 -= vmagic_bias;
87
88 // Compute reduced argument t := x - n * log(2) / 64.
89 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
90 float vt0 = vn0 * vminus_ln2_o64_hi + vx0;
91 float vt1 = vn1 * vminus_ln2_o64_hi + vx1;
92
93 vt0 = vn0 * vminus_ln2_o64_lo + vt0;
94 vt1 = vn1 * vminus_ln2_o64_lo + vt1;
95
Marat Dukhan102a7392020-11-20 01:18:10 -080096 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhanf46f6752020-01-21 11:03:49 -080097 float vp0 = vt0 * vc2;
98 float vp1 = vt1 * vc2;
99
100 vp0 = vp0 * vt0 + vt0;
101 vp1 = vp1 * vt1 + vt1;
102
103 // Reconstruct the final f value:
104 // f = s * (1 + t * (1 + t * c2))
105 // = s * (1 + t + t * (t * c2))
106 // = s + s * (t + t * (t * c2))
107 // = s + s * p
108 float vf0 = vp0 * vs0 + vs0;
109 float vf1 = vp1 * vs1 + vs1;
110
111 // For inputs below denormal cutoff, replace output with +0.0f.
112 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
113 if XNN_UNPREDICTABLE(vx0 < vdenorm_cutoff) {
114 vf0 = 0.0f;
115 }
116 if XNN_UNPREDICTABLE(vx1 < vdenorm_cutoff) {
117 vf1 = 0.0f;
118 }
119
120 // Store 2 outputs at a time.
121 output[0] = vf0;
122 output[1] = vf1;
123 output += 2;
124
125 // Accumulate computed exponents.
126 vacc0 += vf0;
127 vacc1 += vf1;
128 }
129 // Add up all accumulators to vacc0
130 vacc0 += vacc1;
131
132 float vacc = vacc0;
133 for (; elements >= sizeof(float); elements -= sizeof(float)) {
134 // Load 1 input at a time.
135 const float vi = *input++;
136
137 // Subtract maximum input x := i - i_max. This implies x <= 0.
138 const float vx = vi - vi_max;
139
140 // Compute reduced argument n := round(x * 64 / log(2)).
141 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
142 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
143 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
144 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
145 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
146 // algorithm.
147 float vn = vx * vlog2e_x64 + vmagic_bias;
148
149 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
150 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
151 // e := int(n / 64). We create s in two steps:
152 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
153 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
154 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
155 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
156 // and thus the adjusted exponent is not lower than -126.
157 //
158 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
159 const uint32_t ve = (fp32_to_bits(vn) & UINT32_C(0xFFFFFFC0)) << 17;
160
161 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
162 const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
163 // Adjust exponent of the value l fetched from the table to get the final s value.
164 const float vs = fp32_from_bits(xnn_table_exp2_k_over_64[vidx] + ve);
165
166 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
167 vn -= vmagic_bias;
168
169 // Compute reduced argument t := x - n * log(2) / 64.
170 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
171 float vt = vn * vminus_ln2_o64_hi + vx;
172 vt = vn * vminus_ln2_o64_lo + vt;
173
Marat Dukhan102a7392020-11-20 01:18:10 -0800174 // Compute degree-2 polynomial approximation for exp(t) on [-log(2)/128, log(2)/128].
Marat Dukhanf46f6752020-01-21 11:03:49 -0800175 float vp = vt * vc2;
176 vp = vp * vt + vt;
177
178 // Reconstruct the final f value:
179 // f = s * (1 + t * (1 + t * c2))
180 // = s * (1 + t + t * (t * c2))
181 // = s + s * (t + t * (t * c2))
182 // = s + s * p
183 float vf = vp * vs + vs;
184
185 // For inputs below denormal cutoff, replace output with +0.0f.
186 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
187 if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
188 vf = 0.0f;
189 }
190
191 // Store 1 output at a time.
192 *output++ = vf;
193
194 // Accumulate computed exponents.
195 vacc += vf;
196 }
197 *sum = vacc;
198}