blob: 5b86b2fc9c291b5fddf1014a864ff103082e1bba [file] [log] [blame]
Marat Dukhanb39689d2020-01-24 13:32:20 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/sse2-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2019 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <emmintrin.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__sse2_p5_x16_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
Marat Dukhanb2217dd2020-05-28 17:30:28 -070023 float max) XNN_DISABLE_TSAN
Marat Dukhanb39689d2020-01-24 13:32:20 -080024{
25 assert(elements % sizeof(float) == 0);
26
27 const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep6f);
30 const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33 const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34
35 const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
36 const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
37 const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
38 const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
39 const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
40
41 const __m128 vi_max = _mm_set1_ps(max);
42
43 __m128 vacc0 = _mm_setzero_ps();
44 __m128 vacc1 = _mm_setzero_ps();
45 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46 // Load 16 (4x4) inputs at a time.
47 const __m128 vi0123 = _mm_loadu_ps(input);
48 const __m128 vi4567 = _mm_loadu_ps(input + 4);
49 const __m128 vi89AB = _mm_loadu_ps(input + 8);
50 const __m128 viCDEF = _mm_loadu_ps(input + 12);
51 input += 16;
52
53 // Subtract maximum input x := i - i_max. This implies x <= 0.
54 const __m128 vx0123 = _mm_sub_ps(vi0123, vi_max);
55 const __m128 vx4567 = _mm_sub_ps(vi4567, vi_max);
56 const __m128 vx89AB = _mm_sub_ps(vi89AB, vi_max);
57 const __m128 vxCDEF = _mm_sub_ps(viCDEF, vi_max);
58
59 // Compute reduced argument elements := round(x / log(2)).
60 __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vx0123, vlog2e), vmagic_bias);
61 __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vx4567, vlog2e), vmagic_bias);
62 __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vx89AB, vlog2e), vmagic_bias);
63 __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vxCDEF, vlog2e), vmagic_bias);
64
65 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
66 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
67 const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
68 const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
69 const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
70 const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
71
72 // Subtract the large number back to get final elements := round(x / log(2)).
73 vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
74 vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
75 vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
76 vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
77
78 // Compute reduced argument t := x - elements * log(2).
79 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80 __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vx0123);
81 __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vx4567);
82 __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vx89AB);
83 __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vxCDEF);
84
85 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
86 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
87 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
88 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
89
Marat Dukhan102a7392020-11-20 01:18:10 -080090 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhanb39689d2020-01-24 13:32:20 -080091 __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
92 __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
93 __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
94 __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
95
96 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
97 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
98 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
99 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
100
101 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
102 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
103 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
104 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
105
106 vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
107 vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
108 vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
109 vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
110
111 // Reconstruct the final f value:
112 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
113 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
114 // = s + (t * s) * p
115 vt0123 = _mm_mul_ps(vt0123, vs0123);
116 vt4567 = _mm_mul_ps(vt4567, vs4567);
117 vt89AB = _mm_mul_ps(vt89AB, vs89AB);
118 vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
119
120 __m128 vf0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
121 __m128 vf4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
122 __m128 vf89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
123 __m128 vfCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
124
125 // For inputs below zero cutoff, replace output with +0.0f.
126 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
127 vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vx0123, vdenorm_cutoff), vf0123);
128 vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vx4567, vdenorm_cutoff), vf4567);
129 vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vx89AB, vdenorm_cutoff), vf89AB);
130 vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vxCDEF, vdenorm_cutoff), vfCDEF);
131
132 // Store 16 (4x4) outputs at a time.
133 _mm_storeu_ps(output, vf0123);
134 _mm_storeu_ps(output + 4, vf4567);
135 _mm_storeu_ps(output + 8, vf89AB);
136 _mm_storeu_ps(output + 12, vfCDEF);
137 output += 16;
138
139 // Accumulate computed exponents.
140 vacc0 = _mm_add_ps(vacc0, vf0123);
141 vacc0 = _mm_add_ps(vacc0, vf4567);
142 vacc0 = _mm_add_ps(vacc0, vf89AB);
143 vacc0 = _mm_add_ps(vacc0, vfCDEF);
144 }
145 // Add up all accumulators to vacc0
146 vacc0 = _mm_add_ps(vacc0, vacc1);
147
148 __m128 vacc = vacc0;
149 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
150 // Load 4 inputs at a time.
151 const __m128 vi = _mm_loadu_ps(input);
152 input += 4;
153
154 // Subtract maximum input x := i - i_max. This implies x <= 0.
155 const __m128 vx = _mm_sub_ps(vi, vi_max);
156
157 // Compute reduced argument elements := round(x / log(2)).
158 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
159
160 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
161 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
162 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
163
164 // Subtract the large number back to get final elements := round(x / log(2)).
165 vn = _mm_sub_ps(vn, vmagic_bias);
166
167 // Compute reduced argument t := x - elements * log(2).
168 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
169 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
170 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
171
Marat Dukhan102a7392020-11-20 01:18:10 -0800172 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhanb39689d2020-01-24 13:32:20 -0800173 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
174 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
175 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
176 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
177
178 // Reconstruct the final f value:
179 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
180 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
181 // = s + (t * s) * p
182 vt = _mm_mul_ps(vt, vs);
183 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
184
185 // For inputs below zero cutoff, replace output with +0.0f.
186 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
187 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
188
189 // Store 4 outputs at a time.
190 _mm_storeu_ps(output, vf);
191 output += 4;
192
193 // Accumulate computed exponents.
194 vacc = _mm_add_ps(vacc, vf);
195 }
196 if (elements != 0) {
197 assert(elements >= 1 * sizeof(float));
198 assert(elements <= 3 * sizeof(float));
199 // Load 4 inputs at a time.
Marat Dukhanb2217dd2020-05-28 17:30:28 -0700200 const __m128 vi = _mm_loadu_ps(input);
Marat Dukhanb39689d2020-01-24 13:32:20 -0800201
202 // Subtract maximum input x := i - i_max. This implies x <= 0.
203 const __m128 vx = _mm_sub_ps(vi, vi_max);
204
205 // Compute reduced argument elements := round(x / log(2)).
206 __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
207
208 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
209 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
210 const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
211
212 // Subtract the large number back to get final elements := round(x / log(2)).
213 vn = _mm_sub_ps(vn, vmagic_bias);
214
215 // Compute reduced argument t := x - elements * log(2).
216 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
217 __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
218 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
219
Marat Dukhan102a7392020-11-20 01:18:10 -0800220 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhanb39689d2020-01-24 13:32:20 -0800221 __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
222 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
223 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
224 vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
225
226 // Reconstruct the final f value:
227 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
228 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
229 // = s + (t * s) * p
230 vt = _mm_mul_ps(vt, vs);
231 __m128 vf = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
232
233 // For inputs below zero cutoff, replace output with +0.0f.
234 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
235 vf = _mm_andnot_ps(_mm_cmplt_ps(vx, vdenorm_cutoff), vf);
236
237 if (elements & (2 * sizeof(float))) {
238 // Store 2 outputs at a time.
239 _mm_storel_pi((__m64*) output, vf);
240 output += 2;
241
242 // Accumulate 2 computed exponents.
243 vacc = _mm_add_ps(vacc, _mm_movelh_ps(vf, _mm_setzero_ps()));
244
245 vf = _mm_movehl_ps(vf, vf);
246 }
247 if (elements & (1 * sizeof(float))) {
248 // Store 1 output at a time.
249 _mm_store_ss(output, vf);
250
251 // Accumulate 1 computed exponent.
252 vacc = _mm_add_ss(vacc, vf);
253 }
254 }
255 // Reduce 4 elements in the SIMD register
256 vacc = _mm_add_ps(vacc, _mm_movehl_ps(vacc, vacc));
257 vacc = _mm_add_ss(vacc, _mm_shuffle_ps(vacc, vacc, _MM_SHUFFLE(2, 3, 0, 1)));
258 _mm_store_ss(sum, vacc);
259}