blob: 404192088b19f202c18e68edff7d619126feb681 [file] [log] [blame]
Marat Dukhan52238f02020-07-16 15:30:28 -07001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x12_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24{
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 v128_t vacc1 = vacc0;
45 for (; elements >= 12 * sizeof(float); elements -= 12 * sizeof(float)) {
46 // Load 12 (3x4) inputs at a time.
47 const v128_t vi0123 = wasm_v128_load(input);
48 const v128_t vi4567 = wasm_v128_load(input + 4);
49 const v128_t vi89AB = wasm_v128_load(input + 8);
50 input += 12;
51
52 // Subtract maximum input x := i - i_max. This implies x <= 0.
53 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
54 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
55 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
56
57 // Compute reduced argument elements := round(x / log(2)).
58 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
59 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
60 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
61
62 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
63 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
64 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
65 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
66 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
67
68 // Subtract the large number back to get final elements := round(x / log(2)).
69 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
70 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
71 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
72
73 // Compute reduced argument t := x - elements * log(2).
74 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
75 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
76 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
77 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
78
79 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
80 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
81 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
82
Marat Dukhan102a7392020-11-20 01:18:10 -080083 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -070084 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
85 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
86 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
87
88 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
89 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
90 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
91
92 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
93 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
94 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
95
96 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
97 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
98 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
99
100 // Reconstruct the final f value:
101 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
102 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
103 // = s + (t * s) * p
104 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
105 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
106 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
107
108 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
109 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
110 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
111
112 // For inputs below zero cutoff, replace output with +0.0f.
113 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
115 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
116 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
117
118 // Store 12 (3x4) outputs at a time.
119 wasm_v128_store(output, vf0123);
120 wasm_v128_store(output + 4, vf4567);
121 wasm_v128_store(output + 8, vf89AB);
122 output += 12;
123
124 // Accumulate computed exponents.
125 vacc0 = wasm_f32x4_add(vacc0, vf0123);
126 vacc0 = wasm_f32x4_add(vacc0, vf4567);
127 vacc0 = wasm_f32x4_add(vacc0, vf89AB);
128 }
129 // Add up all accumulators to vacc0
130 vacc0 = wasm_f32x4_add(vacc0, vacc1);
131
132 v128_t vacc = vacc0;
133 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
134 // Load 4 inputs at a time.
135 const v128_t vi = wasm_v128_load(input);
136 input += 4;
137
138 // Subtract maximum input x := i - i_max. This implies x <= 0.
139 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
140
141 // Compute reduced argument elements := round(x / log(2)).
142 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
143
144 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
145 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
146 const v128_t vs = wasm_i32x4_shl(vn, 23);
147
148 // Subtract the large number back to get final elements := round(x / log(2)).
149 vn = wasm_f32x4_sub(vn, vmagic_bias);
150
151 // Compute reduced argument t := x - elements * log(2).
152 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
153 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
154 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
155
Marat Dukhan102a7392020-11-20 01:18:10 -0800156 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700157 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
158 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
159 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
160 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
161
162 // Reconstruct the final f value:
163 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
164 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
165 // = s + (t * s) * p
166 vt = wasm_f32x4_mul(vt, vs);
167 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
168
169 // For inputs below zero cutoff, replace output with +0.0f.
170 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
171 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
172
173 // Store 4 outputs at a time.
174 wasm_v128_store(output, vf);
175 output += 4;
176
177 // Accumulate computed exponents.
178 vacc = wasm_f32x4_add(vacc, vf);
179 }
180 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
181 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
182 if (elements != 0) {
183 assert(elements >= 1 * sizeof(float));
184 assert(elements <= 3 * sizeof(float));
185 // Load 4 inputs at a time.
186 const v128_t vi = wasm_v128_load(input);
187
188 // Subtract maximum input x := i - i_max. This implies x <= 0.
189 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
190
191 // Compute reduced argument elements := round(x / log(2)).
192 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
193
194 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
195 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
196 const v128_t vs = wasm_i32x4_shl(vn, 23);
197
198 // Subtract the large number back to get final elements := round(x / log(2)).
199 vn = wasm_f32x4_sub(vn, vmagic_bias);
200
201 // Compute reduced argument t := x - elements * log(2).
202 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
203 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
204 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
205
Marat Dukhan102a7392020-11-20 01:18:10 -0800206 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700207 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
208 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
209 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
210 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
211
212 // Reconstruct the final f value:
213 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
214 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
215 // = s + (t * s) * p
216 vt = wasm_f32x4_mul(vt, vs);
217 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
218
219 // For inputs below zero cutoff, replace output with +0.0f.
220 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
221 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
222
223 if (elements & (2 * sizeof(float))) {
224 // Store and accumulate 2 outputs at a time.
225 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
226 output[0] = vf0;
227 vsum += vf0;
228
229 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
230 output[1] = vf1;
231 vsum += vf1;
232
233 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
234 output += 2;
235 }
236 if (elements & (1 * sizeof(float))) {
237 // Store 1 output at a time.
238 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
239 *output = vf0;
240 vsum += vf0;
241 }
242 }
243 // Reduce 4 elements in the SIMD register
244 *sum = vsum;
245}