blob: 5122d4e4c3ff02061d82db677bc157b9fbd1bc2c [file] [log] [blame]
Marat Dukhan52238f02020-07-16 15:30:28 -07001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x16_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24{
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 v128_t vacc1 = vacc0;
45 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46 // Load 16 (4x4) inputs at a time.
47 const v128_t vi0123 = wasm_v128_load(input);
48 const v128_t vi4567 = wasm_v128_load(input + 4);
49 const v128_t vi89AB = wasm_v128_load(input + 8);
50 const v128_t viCDEF = wasm_v128_load(input + 12);
51 input += 16;
52
53 // Subtract maximum input x := i - i_max. This implies x <= 0.
54 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
55 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
56 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
57 const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
58
59 // Compute reduced argument elements := round(x / log(2)).
60 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
61 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
62 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
63 v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
64
65 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
66 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
67 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
68 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
69 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
70 const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
71
72 // Subtract the large number back to get final elements := round(x / log(2)).
73 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
74 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
75 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
76 vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
77
78 // Compute reduced argument t := x - elements * log(2).
79 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
81 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
82 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
83 v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
84
85 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
86 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
87 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
88 vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
89
Marat Dukhan102a7392020-11-20 01:18:10 -080090 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -070091 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
92 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
93 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
94 v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
95
96 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
97 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
98 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
99 vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
100
101 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
102 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
103 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
104 vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
105
106 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
107 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
108 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
109 vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
110
111 // Reconstruct the final f value:
112 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
113 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
114 // = s + (t * s) * p
115 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
116 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
117 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
118 vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
119
120 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
121 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
122 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
123 v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
124
125 // For inputs below zero cutoff, replace output with +0.0f.
126 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
127 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
128 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
129 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
130 vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
131
132 // Store 16 (4x4) outputs at a time.
133 wasm_v128_store(output, vf0123);
134 wasm_v128_store(output + 4, vf4567);
135 wasm_v128_store(output + 8, vf89AB);
136 wasm_v128_store(output + 12, vfCDEF);
137 output += 16;
138
139 // Accumulate computed exponents.
140 vacc0 = wasm_f32x4_add(vacc0, vf0123);
141 vacc0 = wasm_f32x4_add(vacc0, vf4567);
142 vacc0 = wasm_f32x4_add(vacc0, vf89AB);
143 vacc0 = wasm_f32x4_add(vacc0, vfCDEF);
144 }
145 // Add up all accumulators to vacc0
146 vacc0 = wasm_f32x4_add(vacc0, vacc1);
147
148 v128_t vacc = vacc0;
149 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
150 // Load 4 inputs at a time.
151 const v128_t vi = wasm_v128_load(input);
152 input += 4;
153
154 // Subtract maximum input x := i - i_max. This implies x <= 0.
155 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
156
157 // Compute reduced argument elements := round(x / log(2)).
158 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
159
160 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
161 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
162 const v128_t vs = wasm_i32x4_shl(vn, 23);
163
164 // Subtract the large number back to get final elements := round(x / log(2)).
165 vn = wasm_f32x4_sub(vn, vmagic_bias);
166
167 // Compute reduced argument t := x - elements * log(2).
168 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
169 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
170 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
171
Marat Dukhan102a7392020-11-20 01:18:10 -0800172 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700173 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
174 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
175 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
176 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
177
178 // Reconstruct the final f value:
179 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
180 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
181 // = s + (t * s) * p
182 vt = wasm_f32x4_mul(vt, vs);
183 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
184
185 // For inputs below zero cutoff, replace output with +0.0f.
186 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
187 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
188
189 // Store 4 outputs at a time.
190 wasm_v128_store(output, vf);
191 output += 4;
192
193 // Accumulate computed exponents.
194 vacc = wasm_f32x4_add(vacc, vf);
195 }
196 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
197 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
198 if (elements != 0) {
199 assert(elements >= 1 * sizeof(float));
200 assert(elements <= 3 * sizeof(float));
201 // Load 4 inputs at a time.
202 const v128_t vi = wasm_v128_load(input);
203
204 // Subtract maximum input x := i - i_max. This implies x <= 0.
205 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
206
207 // Compute reduced argument elements := round(x / log(2)).
208 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
209
210 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
211 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
212 const v128_t vs = wasm_i32x4_shl(vn, 23);
213
214 // Subtract the large number back to get final elements := round(x / log(2)).
215 vn = wasm_f32x4_sub(vn, vmagic_bias);
216
217 // Compute reduced argument t := x - elements * log(2).
218 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
219 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
220 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
221
Marat Dukhan102a7392020-11-20 01:18:10 -0800222 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700223 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
224 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
225 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
226 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
227
228 // Reconstruct the final f value:
229 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
230 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
231 // = s + (t * s) * p
232 vt = wasm_f32x4_mul(vt, vs);
233 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
234
235 // For inputs below zero cutoff, replace output with +0.0f.
236 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
237 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
238
239 if (elements & (2 * sizeof(float))) {
240 // Store and accumulate 2 outputs at a time.
241 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
242 output[0] = vf0;
243 vsum += vf0;
244
245 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
246 output[1] = vf1;
247 vsum += vf1;
248
249 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
250 output += 2;
251 }
252 if (elements & (1 * sizeof(float))) {
253 // Store 1 output at a time.
254 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
255 *output = vf0;
256 vsum += vf0;
257 }
258 }
259 // Reduce 4 elements in the SIMD register
260 *sum = vsum;
261}