blob: a7d1a078c173986628cce270b8ba5e44cc721e2a [file] [log] [blame]
Marat Dukhan52238f02020-07-16 15:30:28 -07001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x16(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24{
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
45 // Load 16 (4x4) inputs at a time.
46 const v128_t vi0123 = wasm_v128_load(input);
47 const v128_t vi4567 = wasm_v128_load(input + 4);
48 const v128_t vi89AB = wasm_v128_load(input + 8);
49 const v128_t viCDEF = wasm_v128_load(input + 12);
50 input += 16;
51
52 // Subtract maximum input x := i - i_max. This implies x <= 0.
53 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
54 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
55 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
56 const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
57
58 // Compute reduced argument elements := round(x / log(2)).
59 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
60 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
61 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
62 v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
63
64 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
65 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
66 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
67 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
68 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
69 const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
70
71 // Subtract the large number back to get final elements := round(x / log(2)).
72 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
73 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
74 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
75 vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
76
77 // Compute reduced argument t := x - elements * log(2).
78 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
79 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
80 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
81 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
82 v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
83
84 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
85 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
86 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
87 vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
88
Marat Dukhan102a7392020-11-20 01:18:10 -080089 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -070090 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
91 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
92 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
93 v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
94
95 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
96 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
97 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
98 vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
99
100 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
101 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
102 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
103 vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
104
105 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
106 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
107 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
108 vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
109
110 // Reconstruct the final f value:
111 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
112 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
113 // = s + (t * s) * p
114 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
115 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
116 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
117 vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
118
119 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
120 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
121 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
122 v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
123
124 // For inputs below zero cutoff, replace output with +0.0f.
125 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
126 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
127 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
128 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
129 vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
130
131 // Store 16 (4x4) outputs at a time.
132 wasm_v128_store(output, vf0123);
133 wasm_v128_store(output + 4, vf4567);
134 wasm_v128_store(output + 8, vf89AB);
135 wasm_v128_store(output + 12, vfCDEF);
136 output += 16;
137
138 // Accumulate computed exponents.
139 vacc0 = wasm_f32x4_add(vacc0, vf0123);
140 vacc0 = wasm_f32x4_add(vacc0, vf4567);
141 vacc0 = wasm_f32x4_add(vacc0, vf89AB);
142 vacc0 = wasm_f32x4_add(vacc0, vfCDEF);
143 }
144
145 v128_t vacc = vacc0;
146 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
147 // Load 4 inputs at a time.
148 const v128_t vi = wasm_v128_load(input);
149 input += 4;
150
151 // Subtract maximum input x := i - i_max. This implies x <= 0.
152 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
153
154 // Compute reduced argument elements := round(x / log(2)).
155 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
156
157 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
158 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
159 const v128_t vs = wasm_i32x4_shl(vn, 23);
160
161 // Subtract the large number back to get final elements := round(x / log(2)).
162 vn = wasm_f32x4_sub(vn, vmagic_bias);
163
164 // Compute reduced argument t := x - elements * log(2).
165 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
166 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
167 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
168
Marat Dukhan102a7392020-11-20 01:18:10 -0800169 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700170 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
171 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
172 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
173 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
174
175 // Reconstruct the final f value:
176 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
177 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
178 // = s + (t * s) * p
179 vt = wasm_f32x4_mul(vt, vs);
180 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
181
182 // For inputs below zero cutoff, replace output with +0.0f.
183 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
184 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
185
186 // Store 4 outputs at a time.
187 wasm_v128_store(output, vf);
188 output += 4;
189
190 // Accumulate computed exponents.
191 vacc = wasm_f32x4_add(vacc, vf);
192 }
193 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
194 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
195 if (elements != 0) {
196 assert(elements >= 1 * sizeof(float));
197 assert(elements <= 3 * sizeof(float));
198 // Load 4 inputs at a time.
199 const v128_t vi = wasm_v128_load(input);
200
201 // Subtract maximum input x := i - i_max. This implies x <= 0.
202 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
203
204 // Compute reduced argument elements := round(x / log(2)).
205 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
206
207 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
208 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
209 const v128_t vs = wasm_i32x4_shl(vn, 23);
210
211 // Subtract the large number back to get final elements := round(x / log(2)).
212 vn = wasm_f32x4_sub(vn, vmagic_bias);
213
214 // Compute reduced argument t := x - elements * log(2).
215 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
216 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
217 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
218
Marat Dukhan102a7392020-11-20 01:18:10 -0800219 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700220 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
221 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
222 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
223 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
224
225 // Reconstruct the final f value:
226 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
227 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
228 // = s + (t * s) * p
229 vt = wasm_f32x4_mul(vt, vs);
230 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
231
232 // For inputs below zero cutoff, replace output with +0.0f.
233 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
234 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
235
236 if (elements & (2 * sizeof(float))) {
237 // Store and accumulate 2 outputs at a time.
238 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
239 output[0] = vf0;
240 vsum += vf0;
241
242 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
243 output[1] = vf1;
244 vsum += vf1;
245
246 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
247 output += 2;
248 }
249 if (elements & (1 * sizeof(float))) {
250 // Store 1 output at a time.
251 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
252 *output = vf0;
253 vsum += vf0;
254 }
255 }
256 // Reduce 4 elements in the SIMD register
257 *sum = vsum;
258}