blob: da422dc1b7617ff90a60fe897198ee5968e4d70a [file] [log] [blame]
Marat Dukhan52238f02020-07-16 15:30:28 -07001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x20_acc5(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24{
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 v128_t vacc1 = vacc0;
45 v128_t vacc2 = vacc0;
46 v128_t vacc3 = vacc0;
47 v128_t vacc4 = vacc0;
48 for (; elements >= 20 * sizeof(float); elements -= 20 * sizeof(float)) {
49 // Load 20 (5x4) inputs at a time.
50 const v128_t vi0123 = wasm_v128_load(input);
51 const v128_t vi4567 = wasm_v128_load(input + 4);
52 const v128_t vi89AB = wasm_v128_load(input + 8);
53 const v128_t viCDEF = wasm_v128_load(input + 12);
54 const v128_t viGHIJ = wasm_v128_load(input + 16);
55 input += 20;
56
57 // Subtract maximum input x := i - i_max. This implies x <= 0.
58 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
59 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
60 const v128_t vx89AB = wasm_f32x4_sub(vi89AB, vi_max);
61 const v128_t vxCDEF = wasm_f32x4_sub(viCDEF, vi_max);
62 const v128_t vxGHIJ = wasm_f32x4_sub(viGHIJ, vi_max);
63
64 // Compute reduced argument elements := round(x / log(2)).
65 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
66 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
67 v128_t vn89AB = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx89AB, vlog2e));
68 v128_t vnCDEF = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxCDEF, vlog2e));
69 v128_t vnGHIJ = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vxGHIJ, vlog2e));
70
71 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
72 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
73 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
74 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
75 const v128_t vs89AB = wasm_i32x4_shl(vn89AB, 23);
76 const v128_t vsCDEF = wasm_i32x4_shl(vnCDEF, 23);
77 const v128_t vsGHIJ = wasm_i32x4_shl(vnGHIJ, 23);
78
79 // Subtract the large number back to get final elements := round(x / log(2)).
80 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
81 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
82 vn89AB = wasm_f32x4_sub(vn89AB, vmagic_bias);
83 vnCDEF = wasm_f32x4_sub(vnCDEF, vmagic_bias);
84 vnGHIJ = wasm_f32x4_sub(vnGHIJ, vmagic_bias);
85
86 // Compute reduced argument t := x - elements * log(2).
87 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
88 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
89 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
90 v128_t vt89AB = wasm_f32x4_add(vx89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_hi));
91 v128_t vtCDEF = wasm_f32x4_add(vxCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_hi));
92 v128_t vtGHIJ = wasm_f32x4_add(vxGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_hi));
93
94 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
95 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
96 vt89AB = wasm_f32x4_add(vt89AB, wasm_f32x4_mul(vn89AB, vminus_ln2_lo));
97 vtCDEF = wasm_f32x4_add(vtCDEF, wasm_f32x4_mul(vnCDEF, vminus_ln2_lo));
98 vtGHIJ = wasm_f32x4_add(vtGHIJ, wasm_f32x4_mul(vnGHIJ, vminus_ln2_lo));
99
Marat Dukhan102a7392020-11-20 01:18:10 -0800100 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700101 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
102 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
103 v128_t vp89AB = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt89AB));
104 v128_t vpCDEF = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtCDEF));
105 v128_t vpGHIJ = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vtGHIJ));
106
107 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
108 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
109 vp89AB = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp89AB, vt89AB));
110 vpCDEF = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpCDEF, vtCDEF));
111 vpGHIJ = wasm_f32x4_add(vc3, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
112
113 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
114 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
115 vp89AB = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp89AB, vt89AB));
116 vpCDEF = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpCDEF, vtCDEF));
117 vpGHIJ = wasm_f32x4_add(vc2, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
118
119 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
120 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
121 vp89AB = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp89AB, vt89AB));
122 vpCDEF = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpCDEF, vtCDEF));
123 vpGHIJ = wasm_f32x4_add(vc1, wasm_f32x4_mul(vpGHIJ, vtGHIJ));
124
125 // Reconstruct the final f value:
126 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
127 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
128 // = s + (t * s) * p
129 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
130 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
131 vt89AB = wasm_f32x4_mul(vt89AB, vs89AB);
132 vtCDEF = wasm_f32x4_mul(vtCDEF, vsCDEF);
133 vtGHIJ = wasm_f32x4_mul(vtGHIJ, vsGHIJ);
134
135 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
136 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
137 v128_t vf89AB = wasm_f32x4_add(vs89AB, wasm_f32x4_mul(vt89AB, vp89AB));
138 v128_t vfCDEF = wasm_f32x4_add(vsCDEF, wasm_f32x4_mul(vtCDEF, vpCDEF));
139 v128_t vfGHIJ = wasm_f32x4_add(vsGHIJ, wasm_f32x4_mul(vtGHIJ, vpGHIJ));
140
141 // For inputs below zero cutoff, replace output with +0.0f.
142 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
143 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
144 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
145 vf89AB = wasm_v128_andnot(vf89AB, wasm_f32x4_lt(vx89AB, vdenorm_cutoff));
146 vfCDEF = wasm_v128_andnot(vfCDEF, wasm_f32x4_lt(vxCDEF, vdenorm_cutoff));
147 vfGHIJ = wasm_v128_andnot(vfGHIJ, wasm_f32x4_lt(vxGHIJ, vdenorm_cutoff));
148
149 // Store 20 (5x4) outputs at a time.
150 wasm_v128_store(output, vf0123);
151 wasm_v128_store(output + 4, vf4567);
152 wasm_v128_store(output + 8, vf89AB);
153 wasm_v128_store(output + 12, vfCDEF);
154 wasm_v128_store(output + 16, vfGHIJ);
155 output += 20;
156
157 // Accumulate computed exponents.
158 vacc0 = wasm_f32x4_add(vacc0, vf0123);
159 vacc4 = wasm_f32x4_add(vacc4, vf4567);
160 vacc3 = wasm_f32x4_add(vacc3, vf89AB);
161 vacc2 = wasm_f32x4_add(vacc2, vfCDEF);
162 vacc1 = wasm_f32x4_add(vacc1, vfGHIJ);
163 }
164 // Add up all accumulators to vacc0
165 vacc0 = wasm_f32x4_add(vacc0, vacc1);
166 vacc2 = wasm_f32x4_add(vacc2, vacc3);
167 vacc0 = wasm_f32x4_add(vacc0, vacc2);
168 vacc0 = wasm_f32x4_add(vacc0, vacc4);
169
170 v128_t vacc = vacc0;
171 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
172 // Load 4 inputs at a time.
173 const v128_t vi = wasm_v128_load(input);
174 input += 4;
175
176 // Subtract maximum input x := i - i_max. This implies x <= 0.
177 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
178
179 // Compute reduced argument elements := round(x / log(2)).
180 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
181
182 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
183 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
184 const v128_t vs = wasm_i32x4_shl(vn, 23);
185
186 // Subtract the large number back to get final elements := round(x / log(2)).
187 vn = wasm_f32x4_sub(vn, vmagic_bias);
188
189 // Compute reduced argument t := x - elements * log(2).
190 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
191 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
192 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
193
Marat Dukhan102a7392020-11-20 01:18:10 -0800194 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700195 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
196 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
197 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
198 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
199
200 // Reconstruct the final f value:
201 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
202 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
203 // = s + (t * s) * p
204 vt = wasm_f32x4_mul(vt, vs);
205 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
206
207 // For inputs below zero cutoff, replace output with +0.0f.
208 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
209 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
210
211 // Store 4 outputs at a time.
212 wasm_v128_store(output, vf);
213 output += 4;
214
215 // Accumulate computed exponents.
216 vacc = wasm_f32x4_add(vacc, vf);
217 }
218 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
219 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
220 if (elements != 0) {
221 assert(elements >= 1 * sizeof(float));
222 assert(elements <= 3 * sizeof(float));
223 // Load 4 inputs at a time.
224 const v128_t vi = wasm_v128_load(input);
225
226 // Subtract maximum input x := i - i_max. This implies x <= 0.
227 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
228
229 // Compute reduced argument elements := round(x / log(2)).
230 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
231
232 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
233 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
234 const v128_t vs = wasm_i32x4_shl(vn, 23);
235
236 // Subtract the large number back to get final elements := round(x / log(2)).
237 vn = wasm_f32x4_sub(vn, vmagic_bias);
238
239 // Compute reduced argument t := x - elements * log(2).
240 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
241 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
242 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
243
Marat Dukhan102a7392020-11-20 01:18:10 -0800244 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700245 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
246 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
247 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
248 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
249
250 // Reconstruct the final f value:
251 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
252 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
253 // = s + (t * s) * p
254 vt = wasm_f32x4_mul(vt, vs);
255 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
256
257 // For inputs below zero cutoff, replace output with +0.0f.
258 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
259 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
260
261 if (elements & (2 * sizeof(float))) {
262 // Store and accumulate 2 outputs at a time.
263 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
264 output[0] = vf0;
265 vsum += vf0;
266
267 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
268 output[1] = vf1;
269 vsum += vf1;
270
271 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
272 output += 2;
273 }
274 if (elements & (1 * sizeof(float))) {
275 // Store 1 output at a time.
276 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
277 *output = vf0;
278 vsum += vf0;
279 }
280 }
281 // Reduce 4 elements in the SIMD register
282 *sum = vsum;
283}