blob: 2a37aa006f02594c3227c2d33a30ab1f9ea541d7 [file] [log] [blame]
Marat Dukhan52238f02020-07-16 15:30:28 -07001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x4(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24{
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
45 // Load 4 (1x4) inputs at a time.
46 const v128_t vi0123 = wasm_v128_load(input);
47 input += 4;
48
49 // Subtract maximum input x := i - i_max. This implies x <= 0.
50 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
51
52 // Compute reduced argument elements := round(x / log(2)).
53 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
54
55 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
56 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
57 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
58
59 // Subtract the large number back to get final elements := round(x / log(2)).
60 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
61
62 // Compute reduced argument t := x - elements * log(2).
63 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
64 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
65
66 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
67
Marat Dukhan102a7392020-11-20 01:18:10 -080068 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -070069 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
70
71 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
72
73 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
74
75 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
76
77 // Reconstruct the final f value:
78 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
79 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
80 // = s + (t * s) * p
81 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
82
83 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
84
85 // For inputs below zero cutoff, replace output with +0.0f.
86 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
87 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
88
89 // Store 4 (1x4) outputs at a time.
90 wasm_v128_store(output, vf0123);
91 output += 4;
92
93 // Accumulate computed exponents.
94 vacc0 = wasm_f32x4_add(vacc0, vf0123);
95 }
96
97 v128_t vacc = vacc0;
98 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
99 // Load 4 inputs at a time.
100 const v128_t vi = wasm_v128_load(input);
101 input += 4;
102
103 // Subtract maximum input x := i - i_max. This implies x <= 0.
104 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
105
106 // Compute reduced argument elements := round(x / log(2)).
107 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
108
109 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
110 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
111 const v128_t vs = wasm_i32x4_shl(vn, 23);
112
113 // Subtract the large number back to get final elements := round(x / log(2)).
114 vn = wasm_f32x4_sub(vn, vmagic_bias);
115
116 // Compute reduced argument t := x - elements * log(2).
117 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
118 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
119 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
120
Marat Dukhan102a7392020-11-20 01:18:10 -0800121 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700122 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
123 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
124 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
125 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
126
127 // Reconstruct the final f value:
128 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
129 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
130 // = s + (t * s) * p
131 vt = wasm_f32x4_mul(vt, vs);
132 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
133
134 // For inputs below zero cutoff, replace output with +0.0f.
135 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
136 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
137
138 // Store 4 outputs at a time.
139 wasm_v128_store(output, vf);
140 output += 4;
141
142 // Accumulate computed exponents.
143 vacc = wasm_f32x4_add(vacc, vf);
144 }
145 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
146 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
147 if (elements != 0) {
148 assert(elements >= 1 * sizeof(float));
149 assert(elements <= 3 * sizeof(float));
150 // Load 4 inputs at a time.
151 const v128_t vi = wasm_v128_load(input);
152
153 // Subtract maximum input x := i - i_max. This implies x <= 0.
154 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
155
156 // Compute reduced argument elements := round(x / log(2)).
157 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
158
159 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
160 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
161 const v128_t vs = wasm_i32x4_shl(vn, 23);
162
163 // Subtract the large number back to get final elements := round(x / log(2)).
164 vn = wasm_f32x4_sub(vn, vmagic_bias);
165
166 // Compute reduced argument t := x - elements * log(2).
167 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
168 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
169 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
170
Marat Dukhan102a7392020-11-20 01:18:10 -0800171 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700172 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
173 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
174 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
175 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
176
177 // Reconstruct the final f value:
178 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
179 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
180 // = s + (t * s) * p
181 vt = wasm_f32x4_mul(vt, vs);
182 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
183
184 // For inputs below zero cutoff, replace output with +0.0f.
185 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
186 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
187
188 if (elements & (2 * sizeof(float))) {
189 // Store and accumulate 2 outputs at a time.
190 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
191 output[0] = vf0;
192 vsum += vf0;
193
194 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
195 output[1] = vf1;
196 vsum += vf1;
197
198 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
199 output += 2;
200 }
201 if (elements & (1 * sizeof(float))) {
202 // Store 1 output at a time.
203 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
204 *output = vf0;
205 vsum += vf0;
206 }
207 }
208 // Reduce 4 elements in the SIMD register
209 *sum = vsum;
210}