blob: 5f60d503db374e1dc163c7428d50f6ad1b25fc24 [file] [log] [blame]
Marat Dukhan52238f02020-07-16 15:30:28 -07001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/wasmsimd-p5.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <wasm_simd128.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18void xnn_f32_raddstoreexpminusmax_ukernel__wasmsimd_p5_x8_acc2(
19 size_t elements,
20 const float* input,
21 float* output,
22 float* sum,
23 float max) XNN_DISABLE_TSAN
24{
25 assert(elements % sizeof(float) == 0);
26
27 const v128_t vmagic_bias = wasm_f32x4_splat(0x1.8000FEp23f);
28 // The smallest x for which expf(x) is normalized.
29 const v128_t vdenorm_cutoff = wasm_f32x4_splat(-0x1.5D589Ep6f);
30 const v128_t vlog2e = wasm_f32x4_splat(0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const v128_t vminus_ln2_hi = wasm_f32x4_splat(-0x1.62E400p-1f);
33 const v128_t vminus_ln2_lo = wasm_f32x4_splat(-0x1.7F7D1Cp-20f);
34
35 const v128_t vc1 = wasm_f32x4_splat(0x1.FFFFF6p-1f);
36 const v128_t vc2 = wasm_f32x4_splat(0x1.FFFDC6p-2f);
37 const v128_t vc3 = wasm_f32x4_splat(0x1.555A80p-3f);
38 const v128_t vc4 = wasm_f32x4_splat(0x1.573A1Ap-5f);
39 const v128_t vc5 = wasm_f32x4_splat(0x1.0F9F9Cp-7f);
40
41 const v128_t vi_max = wasm_f32x4_splat(max);
42
43 v128_t vacc0 = wasm_f32x4_splat(0.0f);
44 v128_t vacc1 = vacc0;
45 for (; elements >= 8 * sizeof(float); elements -= 8 * sizeof(float)) {
46 // Load 8 (2x4) inputs at a time.
47 const v128_t vi0123 = wasm_v128_load(input);
48 const v128_t vi4567 = wasm_v128_load(input + 4);
49 input += 8;
50
51 // Subtract maximum input x := i - i_max. This implies x <= 0.
52 const v128_t vx0123 = wasm_f32x4_sub(vi0123, vi_max);
53 const v128_t vx4567 = wasm_f32x4_sub(vi4567, vi_max);
54
55 // Compute reduced argument elements := round(x / log(2)).
56 v128_t vn0123 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx0123, vlog2e));
57 v128_t vn4567 = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx4567, vlog2e));
58
59 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
60 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
61 const v128_t vs0123 = wasm_i32x4_shl(vn0123, 23);
62 const v128_t vs4567 = wasm_i32x4_shl(vn4567, 23);
63
64 // Subtract the large number back to get final elements := round(x / log(2)).
65 vn0123 = wasm_f32x4_sub(vn0123, vmagic_bias);
66 vn4567 = wasm_f32x4_sub(vn4567, vmagic_bias);
67
68 // Compute reduced argument t := x - elements * log(2).
69 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
70 v128_t vt0123 = wasm_f32x4_add(vx0123, wasm_f32x4_mul(vn0123, vminus_ln2_hi));
71 v128_t vt4567 = wasm_f32x4_add(vx4567, wasm_f32x4_mul(vn4567, vminus_ln2_hi));
72
73 vt0123 = wasm_f32x4_add(vt0123, wasm_f32x4_mul(vn0123, vminus_ln2_lo));
74 vt4567 = wasm_f32x4_add(vt4567, wasm_f32x4_mul(vn4567, vminus_ln2_lo));
75
Marat Dukhan102a7392020-11-20 01:18:10 -080076 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -070077 v128_t vp0123 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt0123));
78 v128_t vp4567 = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt4567));
79
80 vp0123 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp0123, vt0123));
81 vp4567 = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp4567, vt4567));
82
83 vp0123 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp0123, vt0123));
84 vp4567 = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp4567, vt4567));
85
86 vp0123 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp0123, vt0123));
87 vp4567 = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp4567, vt4567));
88
89 // Reconstruct the final f value:
90 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
91 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
92 // = s + (t * s) * p
93 vt0123 = wasm_f32x4_mul(vt0123, vs0123);
94 vt4567 = wasm_f32x4_mul(vt4567, vs4567);
95
96 v128_t vf0123 = wasm_f32x4_add(vs0123, wasm_f32x4_mul(vt0123, vp0123));
97 v128_t vf4567 = wasm_f32x4_add(vs4567, wasm_f32x4_mul(vt4567, vp4567));
98
99 // For inputs below zero cutoff, replace output with +0.0f.
100 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
101 vf0123 = wasm_v128_andnot(vf0123, wasm_f32x4_lt(vx0123, vdenorm_cutoff));
102 vf4567 = wasm_v128_andnot(vf4567, wasm_f32x4_lt(vx4567, vdenorm_cutoff));
103
104 // Store 8 (2x4) outputs at a time.
105 wasm_v128_store(output, vf0123);
106 wasm_v128_store(output + 4, vf4567);
107 output += 8;
108
109 // Accumulate computed exponents.
110 vacc0 = wasm_f32x4_add(vacc0, vf0123);
111 vacc0 = wasm_f32x4_add(vacc0, vf4567);
112 }
113 // Add up all accumulators to vacc0
114 vacc0 = wasm_f32x4_add(vacc0, vacc1);
115
116 v128_t vacc = vacc0;
117 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
118 // Load 4 inputs at a time.
119 const v128_t vi = wasm_v128_load(input);
120 input += 4;
121
122 // Subtract maximum input x := i - i_max. This implies x <= 0.
123 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
124
125 // Compute reduced argument elements := round(x / log(2)).
126 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
127
128 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
129 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
130 const v128_t vs = wasm_i32x4_shl(vn, 23);
131
132 // Subtract the large number back to get final elements := round(x / log(2)).
133 vn = wasm_f32x4_sub(vn, vmagic_bias);
134
135 // Compute reduced argument t := x - elements * log(2).
136 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
137 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
138 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
139
Marat Dukhan102a7392020-11-20 01:18:10 -0800140 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700141 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
142 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
143 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
144 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
145
146 // Reconstruct the final f value:
147 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
148 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
149 // = s + (t * s) * p
150 vt = wasm_f32x4_mul(vt, vs);
151 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
152
153 // For inputs below zero cutoff, replace output with +0.0f.
154 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
155 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
156
157 // Store 4 outputs at a time.
158 wasm_v128_store(output, vf);
159 output += 4;
160
161 // Accumulate computed exponents.
162 vacc = wasm_f32x4_add(vacc, vf);
163 }
164 vacc = wasm_f32x4_add(vacc, wasm_v32x4_shuffle(vacc, vacc, 2, 3, 2, 3));
165 float vsum = wasm_f32x4_extract_lane(vacc, 0) + wasm_f32x4_extract_lane(vacc, 1);
166 if (elements != 0) {
167 assert(elements >= 1 * sizeof(float));
168 assert(elements <= 3 * sizeof(float));
169 // Load 4 inputs at a time.
170 const v128_t vi = wasm_v128_load(input);
171
172 // Subtract maximum input x := i - i_max. This implies x <= 0.
173 const v128_t vx = wasm_f32x4_sub(vi, vi_max);
174
175 // Compute reduced argument elements := round(x / log(2)).
176 v128_t vn = wasm_f32x4_add(vmagic_bias, wasm_f32x4_mul(vx, vlog2e));
177
178 // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
179 // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
180 const v128_t vs = wasm_i32x4_shl(vn, 23);
181
182 // Subtract the large number back to get final elements := round(x / log(2)).
183 vn = wasm_f32x4_sub(vn, vmagic_bias);
184
185 // Compute reduced argument t := x - elements * log(2).
186 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
187 v128_t vt = wasm_f32x4_add(vx, wasm_f32x4_mul(vn, vminus_ln2_hi));
188 vt = wasm_f32x4_add(vt, wasm_f32x4_mul(vn, vminus_ln2_lo));
189
Marat Dukhan102a7392020-11-20 01:18:10 -0800190 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan52238f02020-07-16 15:30:28 -0700191 v128_t vp = wasm_f32x4_add(vc4, wasm_f32x4_mul(vc5, vt));
192 vp = wasm_f32x4_add(vc3, wasm_f32x4_mul(vp, vt));
193 vp = wasm_f32x4_add(vc2, wasm_f32x4_mul(vp, vt));
194 vp = wasm_f32x4_add(vc1, wasm_f32x4_mul(vp, vt));
195
196 // Reconstruct the final f value:
197 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
198 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
199 // = s + (t * s) * p
200 vt = wasm_f32x4_mul(vt, vs);
201 v128_t vf = wasm_f32x4_add(vs, wasm_f32x4_mul(vt, vp));
202
203 // For inputs below zero cutoff, replace output with +0.0f.
204 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
205 vf = wasm_v128_andnot(vf, wasm_f32x4_lt(vx, vdenorm_cutoff));
206
207 if (elements & (2 * sizeof(float))) {
208 // Store and accumulate 2 outputs at a time.
209 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
210 output[0] = vf0;
211 vsum += vf0;
212
213 const float vf1 = wasm_f32x4_extract_lane(vf, 1);
214 output[1] = vf1;
215 vsum += vf1;
216
217 vf = wasm_v32x4_shuffle(vf, vf, 2, 3, 2, 3);
218 output += 2;
219 }
220 if (elements & (1 * sizeof(float))) {
221 // Store 1 output at a time.
222 const float vf0 = wasm_f32x4_extract_lane(vf, 0);
223 *output = vf0;
224 vsum += vf0;
225 }
226 }
227 // Reduce 4 elements in the SIMD register
228 *sum = vsum;
229}