XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 1 | // Copyright 2019 Google LLC |
| 2 | // |
| 3 | // This source code is licensed under the BSD-style license found in the |
| 4 | // LICENSE file in the root directory of this source tree. |
| 5 | |
| 6 | #include <algorithm> |
| 7 | #include <cfloat> |
| 8 | #include <cmath> |
| 9 | #include <functional> |
| 10 | #include <random> |
| 11 | #include <string> |
| 12 | #include <vector> |
| 13 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 14 | #include <xnnpack.h> |
| 15 | |
| 16 | #include <benchmark/benchmark.h> |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 17 | #ifdef BENCHMARK_TENSORFLOW_LITE |
| 18 | #include "flatbuffers/include/flatbuffers/flatbuffers.h" |
| 19 | #include "tensorflow/lite/interpreter.h" |
| 20 | #include "tensorflow/lite/kernels/register.h" |
| 21 | #include "tensorflow/lite/model.h" |
| 22 | #include "tensorflow/lite/schema/schema_generated.h" |
| 23 | #include "tensorflow/lite/version.h" |
| 24 | #endif // BENCHMARK_TENSORFLOW_LITE */ |
Frank Barchard | bb4c18b | 2019-09-30 11:05:52 -0700 | [diff] [blame] | 25 | #include "bench/utils.h" |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 26 | |
Chao Mei | c664027 | 2020-07-23 09:35:11 -0700 | [diff] [blame] | 27 | #ifndef XNN_NO_QU8_OPERATORS |
Marat Dukhan | 08b7a97 | 2020-07-14 18:17:29 -0700 | [diff] [blame] | 28 | void xnnpack_deconvolution_qu8(benchmark::State& state, const char* net) { |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 29 | const size_t batch_size = state.range(0); |
| 30 | const size_t input_height = state.range(1); |
| 31 | const size_t input_width = state.range(2); |
| 32 | const size_t kernel_height = state.range(3); |
| 33 | const size_t kernel_width = state.range(4); |
| 34 | const size_t padding = state.range(5); |
| 35 | const size_t adjustment = state.range(6); |
| 36 | const size_t stride = state.range(7); |
| 37 | const size_t dilation = state.range(8); |
| 38 | const size_t groups = state.range(9); |
| 39 | const size_t group_input_channels = state.range(10); |
| 40 | const size_t group_output_channels = state.range(11); |
| 41 | |
| 42 | std::random_device random_device; |
| 43 | auto rng = std::mt19937(random_device()); |
Marat Dukhan | ecd8311 | 2020-08-03 21:50:28 -0700 | [diff] [blame] | 44 | auto i32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), std::ref(rng)); |
Marat Dukhan | 44f0ca7 | 2020-08-02 21:46:58 -0700 | [diff] [blame] | 45 | auto u8rng = std::bind(std::uniform_int_distribution<uint32_t>(0, std::numeric_limits<uint8_t>::max()), std::ref(rng)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 46 | |
| 47 | const size_t output_pixel_stride = groups * group_output_channels; |
| 48 | const size_t input_pixel_stride = groups * group_input_channels; |
| 49 | const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| 50 | const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| 51 | const size_t padding_left = padding / 2; |
| 52 | const size_t padding_top = padding / 2; |
| 53 | const size_t padding_right = padding - padding_left; |
| 54 | const size_t padding_bottom = padding - padding_top; |
| 55 | const size_t output_height = std::max(stride * (input_height - 1) + adjustment + effective_kernel_height, padding) - padding; |
| 56 | const size_t output_width = std::max(stride * (input_width - 1) + adjustment + effective_kernel_width, padding) - padding; |
| 57 | |
| 58 | std::vector<uint8_t> input(batch_size * input_height * input_width * input_pixel_stride); |
| 59 | std::generate(input.begin(), input.end(), std::ref(u8rng)); |
| 60 | std::vector<uint8_t> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| 61 | std::generate(kernel.begin(), kernel.end(), std::ref(u8rng)); |
| 62 | std::vector<int32_t> bias(groups * group_output_channels); |
Marat Dukhan | ecd8311 | 2020-08-03 21:50:28 -0700 | [diff] [blame] | 63 | std::generate(bias.begin(), bias.end(), std::ref(i32rng)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 64 | const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride; |
| 65 | |
Marat Dukhan | 04f03be | 2019-11-19 12:36:47 -0800 | [diff] [blame] | 66 | xnn_status status = xnn_initialize(nullptr /* allocator */); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 67 | if (status != xnn_status_success) { |
| 68 | state.SkipWithError("failed to initialize XNNPACK"); |
| 69 | return; |
| 70 | } |
| 71 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 72 | const size_t num_buffers = 1 + |
Marat Dukhan | 4232323 | 2019-10-23 02:09:02 -0700 | [diff] [blame] | 73 | benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 74 | sizeof(float) * (kernel.size() + bias.size() + output_elements)); |
| 75 | std::vector<uint8_t> output(output_elements * num_buffers); |
| 76 | |
| 77 | std::vector<xnn_operator_t> deconvolution_operators(num_buffers); |
| 78 | for (xnn_operator_t& deconvolution_op : deconvolution_operators) { |
Marat Dukhan | 08b7a97 | 2020-07-14 18:17:29 -0700 | [diff] [blame] | 79 | status = xnn_create_deconvolution2d_nhwc_qu8( |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 80 | padding_top, padding_right, padding_bottom, padding_left, |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 81 | kernel_height, kernel_width, |
| 82 | stride, stride, |
| 83 | dilation, dilation, |
| 84 | groups, group_input_channels, group_output_channels, |
| 85 | input_pixel_stride, output_pixel_stride, |
| 86 | 127, 0.5f, 127, 0.5f, |
| 87 | kernel.data(), bias.data(), |
| 88 | 127, 0.5f, 0, 255, |
| 89 | 0 /* flags */, |
| 90 | &deconvolution_op); |
| 91 | if (status != xnn_status_success) { |
| 92 | state.SkipWithError("failed to create QINT8 Deconvolution operator"); |
| 93 | return; |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | for (size_t i = 0; i < deconvolution_operators.size(); i++) { |
Marat Dukhan | 08b7a97 | 2020-07-14 18:17:29 -0700 | [diff] [blame] | 98 | status = xnn_setup_deconvolution2d_nhwc_qu8( |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 99 | deconvolution_operators[i], |
| 100 | batch_size, input_height, input_width, |
Marat Dukhan | 1898b91 | 2019-11-05 12:25:18 -0800 | [diff] [blame] | 101 | 0 /* height adjustment */, 0 /* width adjustment */, |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 102 | input.data(), output.data() + i * output_elements, |
| 103 | nullptr /* thread pool */); |
| 104 | if (status != xnn_status_success) { |
| 105 | state.SkipWithError("failed to setup QINT8 Deconvolution operator"); |
| 106 | return; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | size_t buffer_index = 0; |
| 111 | for (auto _ : state) { |
| 112 | state.PauseTiming(); |
Marat Dukhan | 4232323 | 2019-10-23 02:09:02 -0700 | [diff] [blame] | 113 | benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(uint8_t)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 114 | buffer_index = (buffer_index + 1) % num_buffers; |
| 115 | state.ResumeTiming(); |
| 116 | |
| 117 | status = xnn_run_operator(deconvolution_operators[buffer_index], nullptr /* thread pool */); |
| 118 | if (status != xnn_status_success) { |
| 119 | state.SkipWithError("failed to run QINT8 Deconvolution operator"); |
| 120 | return; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | for (xnn_operator_t& deconvolution_op : deconvolution_operators) { |
| 125 | status = xnn_delete_operator(deconvolution_op); |
| 126 | if (status != xnn_status_success) { |
| 127 | state.SkipWithError("failed to delete QINT8 Deconvolution operator"); |
| 128 | return; |
| 129 | } |
| 130 | deconvolution_op = nullptr; |
| 131 | } |
| 132 | |
Marat Dukhan | d713e8a | 2020-12-04 14:23:12 -0800 | [diff] [blame] | 133 | const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| 134 | if (cpu_frequency != 0) { |
| 135 | state.counters["cpufreq"] = cpu_frequency; |
| 136 | } |
| 137 | |
| 138 | state.counters["OPS"] = benchmark::Counter( |
| 139 | uint64_t(state.iterations()) * 2 * |
| 140 | batch_size * input_width * input_width * |
| 141 | groups * group_input_channels * group_output_channels * |
| 142 | kernel_height * kernel_width, |
| 143 | benchmark::Counter::kIsRate); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 144 | } |
Chao Mei | c664027 | 2020-07-23 09:35:11 -0700 | [diff] [blame] | 145 | #endif // XNN_NO_QU8_OPERATORS |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 146 | |
| 147 | void xnnpack_deconvolution_f32(benchmark::State& state, const char* net) { |
| 148 | const size_t batch_size = state.range(0); |
| 149 | const size_t input_height = state.range(1); |
| 150 | const size_t input_width = state.range(2); |
| 151 | const size_t kernel_height = state.range(3); |
| 152 | const size_t kernel_width = state.range(4); |
| 153 | const size_t padding = state.range(5); |
| 154 | const size_t adjustment = state.range(6); |
| 155 | const size_t stride = state.range(7); |
| 156 | const size_t dilation = state.range(8); |
| 157 | const size_t groups = state.range(9); |
| 158 | const size_t group_input_channels = state.range(10); |
| 159 | const size_t group_output_channels = state.range(11); |
| 160 | |
| 161 | std::random_device random_device; |
| 162 | auto rng = std::mt19937(random_device()); |
Marat Dukhan | 44f0ca7 | 2020-08-02 21:46:58 -0700 | [diff] [blame] | 163 | auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 164 | |
| 165 | const size_t output_pixel_stride = groups * group_output_channels; |
| 166 | const size_t input_pixel_stride = groups * group_input_channels; |
| 167 | const size_t effective_kernel_height = (kernel_height - 1) * dilation + 1; |
| 168 | const size_t effective_kernel_width = (kernel_width - 1) * dilation + 1; |
| 169 | const size_t padding_left = padding / 2; |
| 170 | const size_t padding_top = padding / 2; |
| 171 | const size_t padding_right = padding - padding_left; |
| 172 | const size_t padding_bottom = padding - padding_top; |
| 173 | const size_t output_height = std::max(stride * (input_height - 1) + adjustment + effective_kernel_height, padding) - padding; |
| 174 | const size_t output_width = std::max(stride * (input_width - 1) + adjustment + effective_kernel_width, padding) - padding; |
| 175 | |
| 176 | std::vector<float> input(batch_size * input_height * input_width * input_pixel_stride + XNN_EXTRA_BYTES / sizeof(float)); |
| 177 | std::generate(input.begin(), input.end(), std::ref(f32rng)); |
| 178 | std::vector<float> kernel(groups * group_output_channels * kernel_height * kernel_width * group_input_channels); |
| 179 | std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| 180 | std::vector<float> bias(groups * group_output_channels); |
| 181 | std::generate(bias.begin(), bias.end(), std::ref(f32rng)); |
| 182 | const size_t output_elements = batch_size * output_height * output_width * output_pixel_stride; |
| 183 | |
Marat Dukhan | 04f03be | 2019-11-19 12:36:47 -0800 | [diff] [blame] | 184 | xnn_status status = xnn_initialize(nullptr /* allocator */); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 185 | if (status != xnn_status_success) { |
| 186 | state.SkipWithError("failed to initialize XNNPACK"); |
| 187 | return; |
| 188 | } |
| 189 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 190 | const size_t num_buffers = 1 + |
Marat Dukhan | 4232323 | 2019-10-23 02:09:02 -0700 | [diff] [blame] | 191 | benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(), |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 192 | sizeof(float) * (kernel.size() + bias.size() + output_elements)); |
| 193 | std::vector<float> output(output_elements * num_buffers); |
| 194 | |
| 195 | std::vector<xnn_operator_t> deconvolution_operators(num_buffers); |
| 196 | for (xnn_operator_t& deconvolution_op : deconvolution_operators) { |
| 197 | status = xnn_create_deconvolution2d_nhwc_f32( |
| 198 | padding_top, padding_right, padding_bottom, padding_left, |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 199 | kernel_height, kernel_width, |
| 200 | stride, stride, |
| 201 | dilation, dilation, |
| 202 | groups, group_input_channels, group_output_channels, |
| 203 | input_pixel_stride, output_pixel_stride, |
| 204 | kernel.data(), bias.data(), |
| 205 | -std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity(), |
| 206 | 0 /* flags */, |
| 207 | &deconvolution_op); |
| 208 | if (status != xnn_status_success) { |
| 209 | state.SkipWithError("failed to create FP32 Deconvolution operator"); |
| 210 | return; |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | for (size_t i = 0; i < deconvolution_operators.size(); i++) { |
| 215 | status = xnn_setup_deconvolution2d_nhwc_f32( |
| 216 | deconvolution_operators[i], |
| 217 | batch_size, input_height, input_width, |
Marat Dukhan | 1898b91 | 2019-11-05 12:25:18 -0800 | [diff] [blame] | 218 | 0 /* height adjustment */, 0 /* width adjustment */, |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 219 | input.data(), output.data() + i * output_elements, |
| 220 | nullptr /* thread pool */); |
| 221 | if (status != xnn_status_success) { |
| 222 | state.SkipWithError("failed to setup QINT8 Deconvolution operator"); |
| 223 | return; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | size_t buffer_index = 0; |
| 228 | for (auto _ : state) { |
| 229 | state.PauseTiming(); |
Marat Dukhan | 4232323 | 2019-10-23 02:09:02 -0700 | [diff] [blame] | 230 | benchmark::utils::PrefetchToL1(input.data(), input.size() * sizeof(float)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 231 | buffer_index = (buffer_index + 1) % num_buffers; |
| 232 | state.ResumeTiming(); |
| 233 | |
| 234 | status = xnn_run_operator(deconvolution_operators[buffer_index], nullptr /* thread pool */); |
| 235 | if (status != xnn_status_success) { |
| 236 | state.SkipWithError("failed to run FP32 Deconvolution operator"); |
| 237 | return; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | for (xnn_operator_t& deconvolution_op : deconvolution_operators) { |
| 242 | status = xnn_delete_operator(deconvolution_op); |
| 243 | if (status != xnn_status_success) { |
| 244 | state.SkipWithError("failed to delete FP32 Deconvolution operator"); |
| 245 | return; |
| 246 | } |
| 247 | deconvolution_op = nullptr; |
| 248 | } |
| 249 | |
Marat Dukhan | d713e8a | 2020-12-04 14:23:12 -0800 | [diff] [blame] | 250 | const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| 251 | if (cpu_frequency != 0) { |
| 252 | state.counters["cpufreq"] = cpu_frequency; |
| 253 | } |
| 254 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 255 | state.counters["FLOPS"] = benchmark::Counter( |
| 256 | uint64_t(state.iterations()) * 2 * |
| 257 | batch_size * input_width * input_width * |
| 258 | groups * group_input_channels * group_output_channels * |
| 259 | kernel_height * kernel_width, |
| 260 | benchmark::Counter::kIsRate); |
| 261 | } |
| 262 | |
| 263 | #ifdef BENCHMARK_TENSORFLOW_LITE |
| 264 | void tflite_deconvolution_f32(benchmark::State& state, const char* net) { |
| 265 | const size_t batch_size = state.range(0); |
| 266 | const size_t input_height = state.range(1); |
| 267 | const size_t input_width = state.range(2); |
| 268 | const size_t kernel_height = state.range(3); |
| 269 | const size_t kernel_width = state.range(4); |
| 270 | const size_t padding = state.range(5); |
| 271 | const size_t adjustment = state.range(6); |
| 272 | const size_t stride = state.range(7); |
| 273 | const size_t dilation = state.range(8); |
| 274 | const size_t groups = state.range(9); |
| 275 | const size_t input_channels = state.range(10); |
| 276 | const size_t output_channels = state.range(11); |
| 277 | |
| 278 | if (groups != 1) { |
| 279 | state.SkipWithError("grouped deconvolution is not supported"); |
| 280 | return; |
| 281 | } |
| 282 | if (dilation != 1) { |
| 283 | state.SkipWithError("dilated deconvolution is not supported"); |
| 284 | return; |
| 285 | } |
| 286 | |
| 287 | std::random_device random_device; |
| 288 | auto rng = std::mt19937(random_device()); |
Marat Dukhan | 44f0ca7 | 2020-08-02 21:46:58 -0700 | [diff] [blame] | 289 | auto f32rng = std::bind(std::uniform_real_distribution<float>(0.0f, 1.0f), std::ref(rng)); |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 290 | |
| 291 | tflite::Padding tf_padding = tflite::Padding_VALID; |
| 292 | if (padding == (kernel_width - 1) && padding == (kernel_height - 1)) { |
| 293 | tf_padding = tflite::Padding_SAME; |
| 294 | } else if (padding == 0) { |
| 295 | tf_padding = tflite::Padding_VALID; |
| 296 | } else { |
| 297 | state.SkipWithError("unsupported padding"); |
| 298 | return; |
| 299 | } |
| 300 | |
| 301 | const size_t output_height = std::max(stride * (input_height - 1) + adjustment + kernel_height, padding) - padding; |
| 302 | const size_t output_width = std::max(stride * (input_width - 1) + adjustment + kernel_width, padding) - padding; |
| 303 | |
| 304 | std::vector<float> kernel(output_channels * kernel_height * kernel_width * input_channels); |
| 305 | std::generate(kernel.begin(), kernel.end(), std::ref(f32rng)); |
| 306 | |
| 307 | flatbuffers::FlatBufferBuilder builder; |
| 308 | flatbuffers::Offset<tflite::OperatorCode> operator_code = |
| 309 | CreateOperatorCode(builder, tflite::BuiltinOperator_TRANSPOSE_CONV, 0); |
| 310 | |
| 311 | flatbuffers::Offset<tflite::TransposeConvOptions> transpose_conv_options = CreateTransposeConvOptions( |
| 312 | builder, |
| 313 | tf_padding, |
| 314 | static_cast<int32_t>(stride), static_cast<int32_t>(stride)); |
| 315 | |
| 316 | const int32_t input_shape[4] = { |
| 317 | static_cast<int32_t>(batch_size), |
| 318 | static_cast<int32_t>(input_height), |
| 319 | static_cast<int32_t>(input_width), |
| 320 | static_cast<int32_t>(input_channels) |
| 321 | }; |
| 322 | const int32_t output_shape[4] = { |
| 323 | static_cast<int32_t>(batch_size), |
| 324 | static_cast<int32_t>(output_height), |
| 325 | static_cast<int32_t>(output_width), |
| 326 | static_cast<int32_t>(output_channels) |
| 327 | }; |
| 328 | const int32_t filter_shape[4] = { |
| 329 | static_cast<int32_t>(output_channels), |
| 330 | static_cast<int32_t>(kernel_height), |
| 331 | static_cast<int32_t>(kernel_width), |
| 332 | static_cast<int32_t>(input_channels) |
| 333 | }; |
| 334 | const int32_t output_shape_shape[1] = { 4 }; |
| 335 | |
| 336 | flatbuffers::Offset<tflite::Buffer> buffers[3] = { |
| 337 | tflite::CreateBuffer(builder, builder.CreateVector({})), |
| 338 | tflite::CreateBuffer(builder, builder.CreateVector( |
| 339 | reinterpret_cast<const uint8_t*>(kernel.data()), |
| 340 | sizeof(float) * kernel.size())), |
| 341 | tflite::CreateBuffer(builder, builder.CreateVector( |
| 342 | reinterpret_cast<const uint8_t*>(output_shape), |
| 343 | sizeof(output_shape))), |
| 344 | }; |
| 345 | |
| 346 | flatbuffers::Offset<tflite::Tensor> tensors[4] = { |
| 347 | tflite::CreateTensor(builder, |
| 348 | builder.CreateVector<int32_t>(output_shape_shape, 1), |
| 349 | tflite::TensorType_INT32, |
| 350 | 2 /* buffer id */, |
| 351 | builder.CreateString("output_shape")), |
| 352 | tflite::CreateTensor(builder, |
| 353 | builder.CreateVector<int32_t>(filter_shape, 4), |
| 354 | tflite::TensorType_FLOAT32, |
| 355 | 1 /* buffer id */, |
| 356 | builder.CreateString("filter")), |
| 357 | tflite::CreateTensor(builder, |
| 358 | builder.CreateVector<int32_t>(input_shape, 4), |
| 359 | tflite::TensorType_FLOAT32, |
| 360 | 0 /* buffer id */, |
| 361 | builder.CreateString("input")), |
| 362 | tflite::CreateTensor(builder, |
| 363 | builder.CreateVector<int32_t>(output_shape, 4), |
| 364 | tflite::TensorType_FLOAT32, |
| 365 | 0 /* buffer id */, |
| 366 | builder.CreateString("output")), |
| 367 | }; |
| 368 | |
| 369 | const int32_t op_inputs[3] = { 0, 1, 2 }; |
| 370 | const int32_t op_outputs[1] = { 3 }; |
| 371 | flatbuffers::Offset<tflite::Operator> op = CreateOperator( |
| 372 | builder, |
| 373 | 0 /* opcode_index */, |
| 374 | builder.CreateVector<int32_t>(op_inputs, 3), |
| 375 | builder.CreateVector<int32_t>(op_outputs, 1), |
| 376 | tflite::BuiltinOptions_TransposeConvOptions, |
| 377 | transpose_conv_options.Union()); |
| 378 | |
| 379 | const int32_t graph_inputs[1] = { 2 }; |
| 380 | const int32_t graph_outputs[1] = { 3 }; |
| 381 | flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph( |
| 382 | builder, |
| 383 | builder.CreateVector(tensors, 4), |
| 384 | builder.CreateVector<int32_t>(graph_inputs, 1), |
| 385 | builder.CreateVector<int32_t>(graph_outputs, 1), |
| 386 | builder.CreateVector(&op, 1), |
| 387 | builder.CreateString("TransposeConv subgraph")); |
| 388 | |
| 389 | flatbuffers::Offset<flatbuffers::String> description = builder.CreateString("TransposeConv model"); |
| 390 | |
| 391 | flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder, |
| 392 | TFLITE_SCHEMA_VERSION, |
| 393 | builder.CreateVector(&operator_code, 1), |
| 394 | builder.CreateVector(&subgraph, 1), |
| 395 | description, |
| 396 | builder.CreateVector(buffers, 3)); |
| 397 | |
| 398 | builder.Finish(model_buffer); |
| 399 | |
| 400 | const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer()); |
Chao Mei | f9fdaa7 | 2021-05-18 23:04:34 -0700 | [diff] [blame] | 401 | tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates resolver; |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 402 | tflite::InterpreterBuilder interpreterBuilder(model, resolver); |
| 403 | std::unique_ptr<tflite::Interpreter> interpreter; |
| 404 | if (interpreterBuilder(&interpreter) != kTfLiteOk) { |
| 405 | state.SkipWithError("failed to create TFLite interpreter"); |
| 406 | return; |
| 407 | } |
| 408 | if (interpreter == nullptr) { |
| 409 | state.SkipWithError("TFLite interpreter is null"); |
| 410 | return; |
| 411 | } |
| 412 | interpreter->SetNumThreads(1); |
| 413 | |
| 414 | if (interpreter->AllocateTensors() != kTfLiteOk) { |
| 415 | state.SkipWithError("failed to allocate tensors"); |
| 416 | return; |
| 417 | } |
| 418 | |
| 419 | std::generate( |
| 420 | interpreter->typed_tensor<float>(2), |
| 421 | interpreter->typed_tensor<float>(2) + batch_size * input_channels * input_height * input_width, |
| 422 | std::ref(f32rng)); |
| 423 | |
| 424 | for (auto _ : state) { |
| 425 | state.PauseTiming(); |
Marat Dukhan | 4232323 | 2019-10-23 02:09:02 -0700 | [diff] [blame] | 426 | benchmark::utils::WipeCache(); |
| 427 | benchmark::utils::PrefetchToL1( |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 428 | interpreter->typed_tensor<float>(2), |
| 429 | batch_size * input_channels * input_height * input_width * sizeof(float)); |
| 430 | state.ResumeTiming(); |
| 431 | |
| 432 | if (interpreter->Invoke() != kTfLiteOk) { |
| 433 | state.SkipWithError("failed to invoke TFLite interpreter"); |
| 434 | return; |
| 435 | } |
| 436 | } |
| 437 | |
Marat Dukhan | d713e8a | 2020-12-04 14:23:12 -0800 | [diff] [blame] | 438 | const uint64_t cpu_frequency = benchmark::utils::GetCurrentCpuFrequency(); |
| 439 | if (cpu_frequency != 0) { |
| 440 | state.counters["cpufreq"] = cpu_frequency; |
| 441 | } |
| 442 | |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 443 | state.counters["FLOPS"] = benchmark::Counter( |
| 444 | uint64_t(state.iterations()) * 2 * |
| 445 | batch_size * input_width * input_width * |
| 446 | input_channels * output_channels * |
| 447 | kernel_height * kernel_width, |
| 448 | benchmark::Counter::kIsRate); |
| 449 | |
| 450 | interpreter.reset(); |
| 451 | } |
| 452 | #endif // BENCHMARK_TENSORFLOW_LITE |
| 453 | |
| 454 | // FCN-32 model (PASCAL VOC version). |
| 455 | // We assume CIF image (352x288) on model input / output. |
| 456 | static void FCN32(benchmark::internal::Benchmark* b) { |
| 457 | b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"}); |
| 458 | |
| 459 | /* N H W KH KW P A S D G GCin GCout */ |
| 460 | b->Args({1, 9, 11, 64, 64, 0, 0, 32, 1, 1, 21, 21}); |
| 461 | } |
| 462 | |
| 463 | // FCN-16 model (PASCAL VOC version). |
| 464 | // We assume CIF image (352x288) on model input / output. |
| 465 | static void FCN16(benchmark::internal::Benchmark* b) { |
| 466 | b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"}); |
| 467 | |
| 468 | /* N H W KH KW P A S D G GCin GCout */ |
| 469 | b->Args({1, 9, 11, 4, 4, 0, 0, 2, 1, 1, 21, 21}); |
| 470 | b->Args({1, 18, 22, 32, 32, 0, 0, 16, 1, 1, 21, 21}); |
| 471 | } |
| 472 | |
| 473 | // FCN-8 model (PASCAL VOC version). |
| 474 | // We assume CIF image (352x288) on model input / output. |
| 475 | static void FCN8(benchmark::internal::Benchmark* b) { |
| 476 | b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"}); |
| 477 | |
| 478 | /* N H W KH KW P A S D G GCin GCout */ |
| 479 | b->Args({1, 9, 11, 4, 4, 0, 0, 2, 1, 1, 21, 21}); |
| 480 | b->Args({1, 18, 22, 4, 4, 0, 0, 2, 1, 1, 21, 21}); |
| 481 | b->Args({1, 36, 44, 16, 16, 0, 0, 8, 1, 1, 21, 21}); |
| 482 | } |
| 483 | |
| 484 | static void ENet(benchmark::internal::Benchmark* b) { |
| 485 | b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"}); |
| 486 | |
| 487 | /********************* Bottleneck 4.0 ********************/ |
| 488 | /* N H W KH KW P A S D G GCin GCout */ |
| 489 | b->Args({1, 64, 64, 3, 3, 2, 1, 2, 1, 1, 32, 32}); |
| 490 | /********************* Bottleneck 5.0 ********************/ |
| 491 | /* N H W KH KW P A S D G GCin GCout */ |
| 492 | b->Args({1, 128, 128, 3, 3, 2, 1, 2, 1, 1, 16, 16}); |
| 493 | /***************** Final Full Convolution ****************/ |
| 494 | /* N H W KH KW P A S D G GCin GCout */ |
| 495 | b->Args({1, 256, 256, 2, 2, 0, 0, 2, 1, 1, 16, 12}); |
| 496 | } |
| 497 | |
| 498 | static void ESPNet(benchmark::internal::Benchmark* b) { |
| 499 | b->ArgNames({"N", "H", "W", "KH", "KW", "P", "A", "S", "D", "G", "GCin", "GCout"}); |
| 500 | |
| 501 | /* N H W KH KW P A S D G GCin GCout */ |
| 502 | b->Args({1, 64, 128, 2, 2, 0, 0, 2, 1, 1, 20, 20}); |
| 503 | b->Args({1, 128, 256, 2, 2, 0, 0, 2, 1, 1, 20, 20}); |
| 504 | b->Args({1, 256, 512, 2, 2, 0, 0, 2, 1, 1, 20, 20}); |
| 505 | } |
| 506 | |
| 507 | BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, fcn32, "FCN-32")->Apply(FCN32)->UseRealTime(); |
| 508 | BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, fcn16, "FCN-16")->Apply(FCN16)->UseRealTime(); |
| 509 | BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, fcn8, "FCN-8")->Apply(FCN8)->UseRealTime(); |
| 510 | BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, enet, "ENet")->Apply(ENet)->UseRealTime(); |
| 511 | BENCHMARK_CAPTURE(xnnpack_deconvolution_f32, espnet, "ESPNet")->Apply(ESPNet)->UseRealTime(); |
| 512 | |
Chao Mei | c664027 | 2020-07-23 09:35:11 -0700 | [diff] [blame] | 513 | #ifndef XNN_NO_QU8_OPERATORS |
Marat Dukhan | 08b7a97 | 2020-07-14 18:17:29 -0700 | [diff] [blame] | 514 | BENCHMARK_CAPTURE(xnnpack_deconvolution_qu8, fcn32, "FCN-32")->Apply(FCN32)->UseRealTime(); |
| 515 | BENCHMARK_CAPTURE(xnnpack_deconvolution_qu8, fcn16, "FCN-16")->Apply(FCN16)->UseRealTime(); |
| 516 | BENCHMARK_CAPTURE(xnnpack_deconvolution_qu8, fcn8, "FCN-8")->Apply(FCN8)->UseRealTime(); |
| 517 | BENCHMARK_CAPTURE(xnnpack_deconvolution_qu8, enet, "ENet")->Apply(ENet)->UseRealTime(); |
| 518 | BENCHMARK_CAPTURE(xnnpack_deconvolution_qu8, espnet, "ESPNet")->Apply(ESPNet)->UseRealTime(); |
Chao Mei | c664027 | 2020-07-23 09:35:11 -0700 | [diff] [blame] | 519 | #endif // XNN_NO_QU8_OPERATORS |
XNNPACK Team | b455b12 | 2019-09-27 18:10:33 -0700 | [diff] [blame] | 520 | |
| 521 | #ifdef BENCHMARK_TENSORFLOW_LITE |
| 522 | BENCHMARK_CAPTURE(tflite_deconvolution_f32, fcn32, "FCN-32")->Apply(FCN32)->UseRealTime(); |
| 523 | BENCHMARK_CAPTURE(tflite_deconvolution_f32, fcn16, "FCN-16")->Apply(FCN16)->UseRealTime(); |
| 524 | BENCHMARK_CAPTURE(tflite_deconvolution_f32, fcn8, "FCN-8")->Apply(FCN8)->UseRealTime(); |
| 525 | BENCHMARK_CAPTURE(tflite_deconvolution_f32, enet, "ENet")->Apply(ENet)->UseRealTime(); |
| 526 | BENCHMARK_CAPTURE(tflite_deconvolution_f32, espnet, "ESPNet")->Apply(ESPNet)->UseRealTime(); |
| 527 | #endif // BENCHMARK_TENSORFLOW_LITE |
| 528 | |
| 529 | #ifndef XNNPACK_BENCHMARK_NO_MAIN |
| 530 | BENCHMARK_MAIN(); |
| 531 | #endif |