blob: 9a150062c1814a6e7345f9fb383b6f2d28ed51b6 [file] [log] [blame]
XNNPACK Teamb455b122019-09-27 18:10:33 -07001// Copyright (c) Facebook, Inc. and its affiliates.
2// All rights reserved.
3//
4// Copyright 2019 Google LLC
5//
6// This source code is licensed under the BSD-style license found in the
7// LICENSE file in the root directory of this source tree.
8
9#include <algorithm>
10#include <cfloat>
11#include <chrono>
12#include <cmath>
13#include <functional>
14#include <mutex>
15#include <random>
16#include <vector>
17
18#include <cpuinfo.h>
XNNPACK Teamb455b122019-09-27 18:10:33 -070019
20#include <benchmark/benchmark.h>
21#include "third_party/gemmlowp/public/gemmlowp.h"
22#include "tensorflow/lite/experimental/ruy/ruy.h"
Frank Barchardbb4c18b2019-09-30 11:05:52 -070023#include "bench/gemm.h"
24#include "bench/utils.h"
25#include <xnnpack/AlignedAllocator.h>
Marat Dukhan1dadbf72019-10-01 10:46:20 -070026#include <xnnpack/common.h>
Frank Barchardbb4c18b2019-09-30 11:05:52 -070027#include <xnnpack/gemm.h>
28#include <xnnpack/pack.h>
29#include <xnnpack/params.h>
30#include <xnnpack/requantization.h>
XNNPACK Teamb455b122019-09-27 18:10:33 -070031
32
33static void GEMMBenchmark(benchmark::State& state,
34 xnn_q8_gemm_ukernel_function q8gemm,
35 size_t mr, size_t nr, size_t kr)
36{
37 if (!cpuinfo_initialize()) {
38 state.SkipWithError("cpuinfo initialization failed");
39 return;
40 }
41
42 const size_t mc = state.range(0);
43 const size_t nc = state.range(1);
44 const size_t kc = state.range(2);
45
46 const size_t nc_stride = benchmark::utils::roundUp(nc, nr);
47 const size_t kc_stride = benchmark::utils::roundUp(kc, kr);
48
49 std::random_device random_device;
50 auto rng = std::mt19937(random_device());
51 auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
52 auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
53
54 std::vector<uint8_t> a(mc * kc);
55 std::generate(a.begin(), a.end(), std::ref(u8rng));
56 std::vector<uint8_t> k(nc * kc);
57 std::generate(k.begin(), k.end(), std::ref(u8rng));
58 std::vector<int32_t> b(nc);
59 std::generate(b.begin(), b.end(), std::ref(s32rng));
60
61 const size_t w_elements = kc_stride * nc_stride + nc_stride * sizeof(int32_t) / sizeof(uint8_t);
62 const size_t c_elements = mc * nc;
63 const size_t num_buffers = 1 +
64 benchmark::utils::divideRoundUp<size_t>(cpuinfo_get_max_cache_size(),
65 sizeof(uint8_t) * (w_elements + c_elements));
66
67 std::vector<uint8_t, AlignedAllocator<uint8_t, 32>> w(w_elements * num_buffers);
68 std::fill(w.begin(), w.end(), 0);
69 xnn_pack_q8_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, 127, 127, k.data(), b.data(), w.data());
70 std::vector<uint8_t> c(c_elements * num_buffers);
71 std::fill(c.begin(), c.end(), 0xA5);
72
73 union xnn_q8_gemm_params quantizationParams =
74 xnn_compute_q8_gemm_params(127, 127, 0.75f, 127, 1, 254);
75
76 size_t buffer_index = 0;
77 for (auto _ : state) {
78 // Use circular buffers (exceeding cache size) and prefetch to control cache state:
79 // - A is always in L1 cache (if fits, otherwise L2, L3, etc)
80 // - W is not in cache (for any cache level)
81 // - C is not in cache (for any cache level)
82 state.PauseTiming();
83 benchmark::utils::prefetchToL1(a.data(), a.size() * sizeof(uint8_t));
84 buffer_index = (buffer_index + 1) % num_buffers;
85 state.ResumeTiming();
86
87 for (uint32_t m = 0; m < mc; m += mr) {
88 const uint32_t mb = min(mc - m, mr);
89 for (uint32_t n = 0; n < nc; n += nr) {
90 const uint32_t nb = min(nc - n, nr);
91 q8gemm(
92 mb, nb, kc,
93 a.data() + m * kc, kc * sizeof(uint8_t),
94 w.data() + (w_elements * buffer_index + n * (kc_stride + sizeof(int32_t))) / sizeof(uint8_t),
95 c.data() + (mc * buffer_index + m) * nc + n, nc * sizeof(uint8_t), nr * sizeof(uint8_t),
96 &quantizationParams);
97 }
98 }
99 }
100
Frank Barchardbb4c18b2019-09-30 11:05:52 -0700101 state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
XNNPACK Teamb455b122019-09-27 18:10:33 -0700102 state.counters["OPS"] = benchmark::Counter(
103 uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
104}
105
106struct GemmlowpOutputPipeline {
107 typedef gemmlowp::VectorMap<const int32_t, gemmlowp::VectorShape::Col> ColVectorMap;
108 typedef std::tuple<
109 gemmlowp::OutputStageBiasAddition<ColVectorMap>,
110 gemmlowp::OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint,
111 gemmlowp::OutputStageClamp,
112 gemmlowp::OutputStageSaturatingCastToUint8>
113 Pipeline;
114
115 static Pipeline Make(
116 const int32_t* bias_data,
117 int output_rows,
118 int32_t output_offset,
119 int32_t output_multiplier,
120 int output_shift,
121 int32_t output_activation_min,
122 int32_t output_activation_max)
123 {
124 ColVectorMap bias_vector(bias_data, output_rows);
125 gemmlowp::OutputStageBiasAddition<ColVectorMap> bias_addition_stage;
126 bias_addition_stage.bias_vector = bias_vector;
127 gemmlowp::OutputStageQuantizeDownInt32ToUint8ScaleByFixedPoint quantize_down_stage;
128 quantize_down_stage.result_offset_after_shift = output_offset;
129 quantize_down_stage.result_fixedpoint_multiplier = output_multiplier;
130 quantize_down_stage.result_shift = output_shift;
131 gemmlowp::OutputStageClamp clamp_stage;
132 clamp_stage.min = output_activation_min;
133 clamp_stage.max = output_activation_max;
134 gemmlowp::OutputStageSaturatingCastToUint8 saturating_cast_stage;
135 return std::make_tuple(bias_addition_stage, quantize_down_stage, clamp_stage, saturating_cast_stage);
136 }
137};
138
139static void GemmlowpBenchmark(benchmark::State& state, uint32_t threads)
140{
141 if (!cpuinfo_initialize()) {
142 state.SkipWithError("cpuinfo initialization failed");
143 return;
144 }
145
146 const size_t mc = state.range(0);
147 const size_t nc = state.range(1);
148 const size_t kc = state.range(2);
149
150 std::random_device random_device;
151 auto rng = std::mt19937(random_device());
152 auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
153 auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
154
155 std::vector<uint8_t> a(mc * kc);
156 std::generate(a.begin(), a.end(), std::ref(u8rng));
157
158 const size_t kElements = nc * kc;
159 const size_t bElements = nc;
160 const size_t c_elements = mc * nc;
161 const size_t num_buffers = 1 +
162 benchmark::utils::divideRoundUp<size_t>(cpuinfo_get_max_cache_size(),
163 kElements * sizeof(uint8_t) + bElements * sizeof(int32_t) + c_elements * sizeof(uint8_t));
164
165 std::vector<uint8_t> k(kElements * num_buffers);
166 std::generate(k.begin(), k.end(), std::ref(u8rng));
167 std::vector<int32_t> b(bElements * num_buffers);
168 std::generate(b.begin(), b.end(), std::ref(s32rng));
169 std::vector<uint8_t> c(c_elements * num_buffers);
170 std::fill(c.begin(), c.end(), 0xA5);
171
172 gemmlowp::MultiThreadGemmContext threadingContext;
173 threadingContext.set_max_num_threads(threads);
174
175 size_t buffer_index = 0;
176 for (auto _ : state) {
177 state.PauseTiming();
178 benchmark::utils::prefetchToL1(a.data(), a.size() * sizeof(uint8_t));
179 buffer_index = (buffer_index + 1) % num_buffers;
180 state.ResumeTiming();
181
182 gemmlowp::MatrixMap<const uint8_t, gemmlowp::MapOrder::RowMajor> AM(a.data(), mc, kc, kc);
183 gemmlowp::MatrixMap<const uint8_t, gemmlowp::MapOrder::ColMajor> BM(k.data() + buffer_index * kElements, kc, nc, kc);
184 gemmlowp::MatrixMap<uint8_t, gemmlowp::MapOrder::RowMajor> CM(c.data() + buffer_index * c_elements, mc, nc, nc);
185 const auto& outputPipeline = GemmlowpOutputPipeline::Make(b.data() + buffer_index * bElements, nc, 127, 127, 127, 0, 255);
186 gemmlowp::GemmWithOutputPipeline<uint8_t, uint8_t, gemmlowp::L8R8WithLhsNonzeroBitDepthParams>(
187 &threadingContext, AM, BM, &CM, 127, 127, outputPipeline);
188 }
189
Frank Barchardbb4c18b2019-09-30 11:05:52 -0700190 state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
XNNPACK Teamb455b122019-09-27 18:10:33 -0700191 state.counters["OPS"] = benchmark::Counter(
192 uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
193}
194
195static void gemmlowp_st(benchmark::State& state, const char* net)
196{
197 GemmlowpBenchmark(state, 1);
198}
199
200static void RuyBenchmark(benchmark::State& state, size_t threads)
201{
202 const size_t mc = state.range(0);
203 const size_t nc = state.range(1);
204 const size_t kc = state.range(2);
205
206 std::random_device random_device;
207 auto rng = std::mt19937(random_device());
208 auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
209 auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
210
211 const size_t num_buffers = 1 +
212 benchmark::utils::divideRoundUp<size_t>(cpuinfo_get_max_cache_size(),
213 nc * (sizeof(uint8_t) * (mc + kc) + sizeof(int32_t)));
214
215 std::vector<uint8_t> a(mc * kc);
216 std::generate(a.begin(), a.end(), std::ref(u8rng));
217 std::vector<uint8_t> k(num_buffers * nc * kc);
218 std::generate(k.begin(), k.end(), std::ref(u8rng));
219 std::vector<int32_t> b(num_buffers * nc);
220 std::generate(b.begin(), b.end(), std::ref(s32rng));
221 std::vector<uint8_t> c(num_buffers * nc * mc);
222 std::fill(c.begin(), c.end(), std::nanf(""));
223
224 // Note: context must be static to avoid the cost of re-creating it for each benchmark.
225 static ruy::Context context;
226 context.max_num_threads = threads;
227
228 ruy::Matrix<uint8_t> ruy_a;
229 ruy::MakeSimpleLayout(nc, kc, ruy::Order::kRowMajor, &ruy_a.layout);
230 ruy_a.zero_point = 127;
231 ruy::Matrix<uint8_t> ruy_b;
232 ruy::MakeSimpleLayout(kc, mc, ruy::Order::kColMajor, &ruy_b.layout);
233 ruy_b.data = a.data();
234 ruy_b.zero_point = 127;
235 ruy::Matrix<uint8_t> ruy_c;
236 ruy::MakeSimpleLayout(nc, mc, ruy::Order::kColMajor, &ruy_c.layout);
237 ruy_c.zero_point = 127;
238
239 ruy::BasicSpec<int32_t, uint8_t> spec;
240 spec.multiplier_fixedpoint = 0x40000000;
241
242 // ruy::Context uses deferred initialization, which affects percieved GEMM performance. Initialization happens during
243 // the first GEMM calls, and per Benoit Jacob it takes up to ~250 milliseconds for performance to stabilize.
244 // Thus, on the first benchmark, we compute GEMM for 500 milliseconds (to be safe) without recording performance, and
245 // keep the ruy::Context object initialized (by being static) between subsequent benchmarks.
246 static std::once_flag warmup;
247 std::call_once(warmup, [&](){
248 auto start = std::chrono::steady_clock::now();
249 do {
250 ruy_a.data = k.data();
251 ruy_c.data = c.data();
252 spec.bias = b.data();
253
254 ruy::Mul<ruy::kAllPaths>(ruy_a, ruy_b, spec, &context, &ruy_c);
255 } while (std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count() < 0.5);
256 });
257
258 size_t buffer_index = 0;
259 for (auto _ : state) {
260 // Use circular buffers (exceeding cache size) and prefetch to control cache state:
261 // - A is always in L1 cache (if fits, otherwise L2, L3, etc)
262 // - K is not in cache (for any cache level)
263 // - B is not in cache (for any cache level)
264 // - C is not in cache (for any cache level)
265 state.PauseTiming();
266 benchmark::utils::prefetchToL1(a.data(), a.size() * sizeof(uint8_t));
267 buffer_index = (buffer_index + 1) % num_buffers;
268 state.ResumeTiming();
269
270 ruy_a.data = k.data() + buffer_index * nc * kc;
271 ruy_c.data = c.data() + buffer_index * mc * nc;
272 spec.bias = b.data() + buffer_index * nc;
273
274 ruy::Mul<ruy::kAllPaths>(ruy_a, ruy_b, spec, &context, &ruy_c);
275 }
276
Frank Barchardbb4c18b2019-09-30 11:05:52 -0700277 state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
XNNPACK Teamb455b122019-09-27 18:10:33 -0700278 state.counters["OPS"] = benchmark::Counter(
279 uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
280}
281
282static void ruy_st(benchmark::State& state, const char* net)
283{
284 RuyBenchmark(state, 1);
285}
286
287
Marat Dukhan1dadbf72019-10-01 10:46:20 -0700288#if XNN_ARCH_ARM || XNN_ARCH_ARM64
XNNPACK Teamb455b122019-09-27 18:10:33 -0700289 static void q8gemm_4x8__neon(benchmark::State& state, const char* net) {
290 GEMMBenchmark(state, xnn_q8_gemm_ukernel_4x8__neon, 4, 8, 1);
291 }
292
293 static void q8gemm_8x8__neon(benchmark::State& state, const char* net) {
294 GEMMBenchmark(state, xnn_q8_gemm_ukernel_8x8__neon, 8, 8, 1);
295 }
296
297 BENCHMARK_GEMM(q8gemm_4x8__neon)
298 BENCHMARK_GEMM(q8gemm_8x8__neon)
299#endif
300
Marat Dukhan1dadbf72019-10-01 10:46:20 -0700301#if XNN_ARCH_X86 || XNN_ARCH_X86_64
XNNPACK Teamb455b122019-09-27 18:10:33 -0700302 static void q8gemm_4x4c2__sse2(benchmark::State& state, const char* net) {
303 GEMMBenchmark(state, xnn_q8_gemm_ukernel_4x4c2__sse2, 4, 4, 2);
304 }
305
306 static void q8gemm_2x4c8__sse2(benchmark::State& state, const char* net) {
307 GEMMBenchmark(state, xnn_q8_gemm_ukernel_2x4c8__sse2, 2, 4, 8);
308 }
309
310 BENCHMARK_GEMM(q8gemm_4x4c2__sse2)
311 BENCHMARK_GEMM(q8gemm_2x4c8__sse2)
312#endif
313
314BENCHMARK_GEMM(gemmlowp_st)
315BENCHMARK_GEMM(ruy_st)
316
317#ifndef XNNPACK_BENCHMARK_NO_MAIN
318BENCHMARK_MAIN();
319#endif
320