blob: 809a292da0c57369a6a783384d057209285cf13b [file] [log] [blame]
Marat Dukhan346a9e52019-11-15 09:06:30 -08001// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#include <assert.h>
7#include <stddef.h>
8
9#include <arm_neon.h>
10
11#include <xnnpack/math-stubs.h>
12
13
Marat Dukhan80bafd22019-11-18 10:16:01 -080014void xnn_math_f32_sigmoid__neonfma_p5_nr2fma(
Marat Dukhan346a9e52019-11-15 09:06:30 -080015 size_t n,
16 const float* input,
17 float* output)
18{
19 assert(n % (4 * sizeof(float)) == 0);
20
21 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
22 // The smallest x for which sigmoidf(x) is normalized.
23 // This number is also the smallest x for which expf(x) is normalized.
24 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);
25 // The largest x for which sigmoidf(x) is not equal 1.0.
26 const float32x4_t vone_cutoff = vmovq_n_f32(0x1.154244p+4f);
27 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p+0f);
28 const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f);
29 const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f);
30 const float32x4_t vone = vmovq_n_f32(1.0f);
31
32 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFF6p-1f);
33 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
34 const float32x4_t vc3 = vmovq_n_f32(-0x1.555A80p-3f);
35 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
36 const float32x4_t vc5 = vmovq_n_f32(-0x1.0F9F9Cp-7f);
37
38 for (; n != 0; n -= 4 * sizeof(float)) {
39 const float32x4_t vx = vld1q_f32(input); input += 4;
40
41 // General structure of the algorithm:
42 // / exp(x) / (1 + exp(x)) if x <= 0
43 // f[x] :=
44 // \ 1 - f[-x] if x >= 0
45 //
46 // First we compute f[z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
47 // then replace result with 1 - f[z] if x >= 0.
48 const float32x4_t vz = vabsq_f32(vx);
49
50 // Compute reduced argument n := round(-z / log(2)).
51 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
52 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
53 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
54 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
55 // anyway. We fixup the result for such inputs at the very end of the algorithm.
56 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
57
58 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
59 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
60 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
61
62 // Subtract the large number back to get final n := round(-z / log(2)).
63 vn = vsubq_f32(vn, vmagic_bias);
64
65 // Compute reduced argument -t := -z - n * log(2) = -(z + n * log(2)).
66 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
67 float32x4_t vt = vfmaq_f32(vz, vn, vln2_hi);
68 vt = vfmaq_f32(vt, vn, vln2_lo);
69
70 // Compute degree-5 polynomial approxiatmion for exp(-t) on [-log(2)/2, log(2)/2].
71 float32x4_t vp = vfmaq_f32(vc4, vc5, vt);
72 vp = vfmaq_f32(vc3, vp, vt);
73 vp = vfmaq_f32(vc2, vp, vt);
74 vp = vfmaq_f32(vc1, vp, vt);
75
76 // Reconstruct the exp(z) value:
77 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
78 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
79 // = s + (t * s) * p
80 vt = vmulq_f32(vt, vs);
81 float32x4_t ve = vfmaq_f32(vs, vp, vt);
82
83 // Denominator of the sigmoid fraction: 1.0 + exp(z)
84 float32x4_t vd = vaddq_f32(ve, vone);
85
86 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
87 // Note: 1 < d <= 2, because z <= 0.0 and 0 < exp(z) <= 1.0.
88 // Thus the reciprocal of the denominator never overflows.
89 float32x4_t vr = vrecpeq_f32(vd);
90 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
91 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
92
93 // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
94 float32x4_t vf = vmulq_f32(ve, vr);
95
96 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
Marat Dukhan44e06a62019-11-18 08:45:58 -080097 const uint32x4_t vm = vcltq_s32(vreinterpretq_s32_f32(vx), vmovq_n_s32(0));
Marat Dukhan346a9e52019-11-15 09:06:30 -080098 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
99
100 // For inputs above 1.0 cutoff, replace output with 1.0.
101 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
102 vf = vbslq_f32(vcgtq_f32(vx, vone_cutoff), vone, vf);
103
104 // For inputs below denormal cutoff, replace output with +0.0f.
105 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
106 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
107
108 vst1q_f32(output, vf); output += 4;
109 }
110}