blob: 1aab21477a8ba5dafc9f3060479bac1267911120 [file] [log] [blame]
Marat Dukhan5b69f8b2020-07-24 15:26:48 -07001// Copyright (c) Facebook, Inc. and its affiliates.
2// All rights reserved.
3//
4// Copyright 2019 Google LLC
5//
6// This source code is licensed under the BSD-style license found in the
7// LICENSE file in the root directory of this source tree.
8
9#include <assert.h>
10#include <stdint.h>
11#include <stddef.h>
12
13#include <fp16/bitcasts.h>
14
Marat Dukhanf86ee8b2021-05-24 23:41:31 -070015#include <xnnpack/math.h>
Marat Dukhan5b69f8b2020-07-24 15:26:48 -070016#include <xnnpack/requantization-stubs.h>
17
18
Marat Dukhan06716242021-05-26 15:56:39 -070019void xnn_qu8_requantize_rndna__scalar_unsigned32(
Marat Dukhan5b69f8b2020-07-24 15:26:48 -070020 size_t n,
21 const int32_t* input,
22 float scale,
23 uint8_t zero_point,
24 uint8_t qmin,
25 uint8_t qmax,
26 uint8_t* output)
27{
28 assert(n % 4 == 0);
29 assert(scale < 1.0f);
30 assert(scale >= 0x1.0p-32f);
31
32 const uint32_t scale_bits = fp32_to_bits(scale);
33 const uint32_t multiplier = (scale_bits << 8) | UINT32_C(0x80000000);
34 const uint32_t shift = 127 + 31 - (scale_bits >> 23);
35 assert(shift >= 32);
36 assert(shift < 64);
37
38 const uint64_t rounding = UINT64_C(1) << (shift - 1);
Marat Dukhan062bee32021-05-27 20:31:07 -070039 const uint32_t rounding_hi = (uint32_t) (rounding >> 32);
Marat Dukhan5b69f8b2020-07-24 15:26:48 -070040 const uint32_t rounding_lo = (uint32_t) rounding;
41 const uint32_t shift_minus_32 = shift - 32;
Marat Dukhan062bee32021-05-27 20:31:07 -070042 const int32_t smin = (int32_t) (uint32_t) qmin - (int32_t) (uint32_t) zero_point;
43 const int32_t smax = (int32_t) (uint32_t) qmax - (int32_t) (uint32_t) zero_point;
Marat Dukhan5b69f8b2020-07-24 15:26:48 -070044 for (; n != 0; n -= 4) {
45 const int32_t x = input[0];
46 const int32_t y = input[1];
47 const int32_t z = input[2];
48 const int32_t w = input[3];
49 input += 4;
50
51 // Compute absolute value of input as unsigned 32-bit int.
52 // All further computations will work with unsigned values to avoid undefined behaviour on signed operations.
53 const uint32_t x_abs = (x >= 0) ? (uint32_t) x : -(uint32_t) x;
54 const uint32_t y_abs = (y >= 0) ? (uint32_t) y : -(uint32_t) y;
55 const uint32_t z_abs = (z >= 0) ? (uint32_t) z : -(uint32_t) z;
56 const uint32_t w_abs = (w >= 0) ? (uint32_t) w : -(uint32_t) w;
57
58 // Compute full 64-bit product of 32-bit factors.
59 const uint64_t x_product = (uint64_t) x_abs * (uint64_t) multiplier;
60 const uint64_t y_product = (uint64_t) y_abs * (uint64_t) multiplier;
61 const uint64_t z_product = (uint64_t) z_abs * (uint64_t) multiplier;
62 const uint64_t w_product = (uint64_t) w_abs * (uint64_t) multiplier;
63
64 // Shift the full 64-bit product right with rounding.
65 // Rounding is performed towards closest integer, with midpoints rounded up (same as away from zero).
66 //
67 // Generally, this operation requires both 64-bit addition and 64-bit shift, but we use two tricks to replace
68 // 64-bit operations with 32-bit operations.
69 //
70 // To avoid full 64-bit addition we make use of three facts:
71 // - 64-bit rounding value added before the shift is a power of 2, and thus has only one bit set.
72 // - When 0x1.0p-32f <= scale < 0x1.0p-31f, then the non-zero bit in rounding is in the low 32 bits, and
73 // rounding is exactly 0x80000000 (2**31), because rounding is 2**(scale-1) and scale >= 32. In this case,
74 // addition of rounding can affect high 32 bits of the product only through overflow, which happens if
75 // low 32-bit part of the product equals or exceeds 0x80000000. We can reformulate the latter condition
76 // as low 32-bit part of the product has the bit 31 set, and then overflow happens if both the low 32-bit part
77 // of the product and the low 32-bit part of the rounding value have bit 31 set. Since 32-bit numbers with the
78 // bit 31 set are negative when interpreted as signed integers, we can check the overflow condition as
79 // (int32_t) (LOW(product) & LOW(rounding)) < 0
80 // - When 0x1.0p-31f <= scale < 1.0f, then the non-zero bit is in the high 32 bits of rounding. We just need
81 // to do 32-bit addition of high 32 bits of rounding and high 32 bits of product. This addition never
82 // overflows because product <= 0x80000000 * 0xFFFFFF00 < 2**63 and rounding = 2**(scale-1) <= 2**62.
83 //
84 // To avoid full 64-bit shift, we leverage the fact that shift >= 32, and do it in two steps:
85 // - Shift by 32, which can be implemented by extacting the high 32-bit word on 32-bit systems.
86 // - Shift by (shift - 32), which can be implemented as a 32-bit shift of high word of addition result.
Marat Dukhan062bee32021-05-27 20:31:07 -070087 const uint32_t x_carry_lo = (uint32_t) ((int32_t)((uint32_t) x_product & rounding_lo) < 0);
88 const uint32_t y_carry_lo = (uint32_t) ((int32_t)((uint32_t) y_product & rounding_lo) < 0);
89 const uint32_t z_carry_lo = (uint32_t) ((int32_t)((uint32_t) z_product & rounding_lo) < 0);
90 const uint32_t w_carry_lo = (uint32_t) ((int32_t)((uint32_t) w_product & rounding_lo) < 0);
Marat Dukhan5b69f8b2020-07-24 15:26:48 -070091
Marat Dukhan062bee32021-05-27 20:31:07 -070092 const uint32_t x_product_hi = (uint32_t) (x_product >> 32);
93 const uint32_t y_product_hi = (uint32_t) (y_product >> 32);
94 const uint32_t z_product_hi = (uint32_t) (z_product >> 32);
95 const uint32_t w_product_hi = (uint32_t) (w_product >> 32);
Marat Dukhan5b69f8b2020-07-24 15:26:48 -070096
Marat Dukhan062bee32021-05-27 20:31:07 -070097 const uint32_t x_abs_scaled = (uint32_t) (x_product_hi + rounding_hi + x_carry_lo) >> shift_minus_32;
98 const uint32_t y_abs_scaled = (uint32_t) (y_product_hi + rounding_hi + y_carry_lo) >> shift_minus_32;
99 const uint32_t z_abs_scaled = (uint32_t) (z_product_hi + rounding_hi + z_carry_lo) >> shift_minus_32;
100 const uint32_t w_abs_scaled = (uint32_t) (w_product_hi + rounding_hi + w_carry_lo) >> shift_minus_32;
Marat Dukhan5b69f8b2020-07-24 15:26:48 -0700101
102 // Copy the sign of input to scaled absolute input value.
Marat Dukhan062bee32021-05-27 20:31:07 -0700103 const int32_t x_scaled = (int32_t) (x >= 0 ? x_abs_scaled : -x_abs_scaled);
104 const int32_t y_scaled = (int32_t) (y >= 0 ? y_abs_scaled : -y_abs_scaled);
105 const int32_t z_scaled = (int32_t) (z >= 0 ? z_abs_scaled : -z_abs_scaled);
106 const int32_t w_scaled = (int32_t) (w >= 0 ? w_abs_scaled : -w_abs_scaled);
Marat Dukhan5b69f8b2020-07-24 15:26:48 -0700107
108 // Clamp scaled value with zero point between (qmin - zero point) and (qmax - zero point).
Marat Dukhan062bee32021-05-27 20:31:07 -0700109 const int32_t x_clamped = math_min_s32(math_max_s32(x_scaled, smin), smax);
110 const int32_t y_clamped = math_min_s32(math_max_s32(y_scaled, smin), smax);
111 const int32_t z_clamped = math_min_s32(math_max_s32(z_scaled, smin), smax);
112 const int32_t w_clamped = math_min_s32(math_max_s32(w_scaled, smin), smax);
Marat Dukhan5b69f8b2020-07-24 15:26:48 -0700113
114 // Add zero point to clamped value.
115 // The result is guaranteed to be in [qmin, qmax] range.
116 //
117 // This addition can not be safely done before clamping, because scaled values are in [-2147483520, 2147483519]
118 // range, so addition of zero point (which can be up to 255) can overflow signed 32-bit integer.
119 const int32_t x_biased = x_clamped + zero_point;
120 const int32_t y_biased = y_clamped + zero_point;
121 const int32_t z_biased = z_clamped + zero_point;
122 const int32_t w_biased = w_clamped + zero_point;
123
124 output[0] = (uint8_t) x_biased;
125 output[1] = (uint8_t) y_biased;
126 output[2] = (uint8_t) z_biased;
127 output[3] = (uint8_t) w_biased;
128 output += 4;
129 }
130}