blob: 8a085bb6e6e3a4c9d477c961625b08de35642685 [file] [log] [blame]
Marat Dukhanc60742b2020-11-23 12:33:27 -08001// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#include <assert.h>
7#include <stddef.h>
8
9#include <xnnpack/common.h>
10#include <xnnpack/math-stubs.h>
11
12#include <fp16/bitcasts.h>
13
14
15// Table of exp2(k / 16) values decremented (as integer) by (k << 19), k = 0..15
16extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_16[16];
17
18void xnn_math_f32_expm1minus__scalar_rr2_lut16_p4(
19 size_t n,
20 const float* input,
21 float* output)
22{
23 assert(n % (4 * sizeof(float)) == 0);
24
25 // Large number such that ulp(magic bias) == exp2(-4)
26 const float vmagic_bias = 0x1.800000p19f;
27 const float vlog2e = 0x1.715476p+0f;
28 // Mask for the lowest 4 bits
29 const uint32_t vindex_mask = UINT32_C(0xF);
30 // The largest x for which expm1f(x) is saturated at -1.0f.
31 const float vsat_cutoff = -0x1.154246p+4f;
Marat Dukhande390d42020-11-29 19:32:18 -080032 // Last 9 bits are zeroes
33 const float vminus_ln2_hi = -0x1.62E400p-1f;
34 const float vminus_ln2_lo = -0x1.7F7D1Cp-20f;
Marat Dukhanc60742b2020-11-23 12:33:27 -080035 // Coefficient of polynomial approximation
36 // exp(t) - 1 ~ t * (1 + t * (c2 + t * (c3 + t * c4)))
37 // on [-log(2)/32, log(2)/32]
38 const float vc4 = 0x1.55563Ap-5f;
39 const float vc3 = 0x1.555708p-3f;
40 const float vc2 = 0x1.000000p-1f;
41 const float vone = 1.0f;
42
43 for (; n != 0; n -= sizeof(float)) {
44 float vx = *input++;
45
46 // Compute reduced argument n := round(x / log(2), 4).
47 // We do it by adding a large number (magic bias), which cause rounding of the result to 4 fractional bits, then
48 // subtracing the large number back. The trick with adding large number is valid only within certain bounds
49 // (|x / log(2)| <= 2**18, i.e. |x| <= 0x1.62E43p+17 = 181704.375), but that is acceptable, because inputs x are
50 // restricted to [-17.328680, 0].
51 // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
52 float vn = vx * vlog2e + vmagic_bias;
53
54 // Create a floating-point number s (scale) such that s := 2**n for valid inputs, i.e. -17.328680 <= x <= 0.0. As n
55 // has 4 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in two steps:
56 // 1. Fetch 2**frac(n) from the table using the 4 low bits of n, as integer. Note that the fetched values are in
57 // the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
58 // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
59 // number, because for -17.328680 <= x <= 0.0 we have -25 <= int(n) <= 0, and thus the adjusted exponent is not
60 // lower than -25.
61 //
62 // Shift bits 4:12 into 23:31 (position of floating-point exponent).
Marat Dukhaned6baaf2020-12-01 15:07:08 -080063 const uint32_t ven = fp32_to_bits(vn) << 19;
Marat Dukhanc60742b2020-11-23 12:33:27 -080064
65 // Use bits 0:4 bits of n, as integer, as an index for table lookup of l := 2**frac(n).
66 const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
67 // Adjust exponent of the value l fetched from the table to get the final s value.
Marat Dukhaned6baaf2020-12-01 15:07:08 -080068 float vs = fp32_from_bits(xnn_table_exp2minus_k_over_16[vidx] + ven);
Marat Dukhanc60742b2020-11-23 12:33:27 -080069
70 // Subtract the large number back to get final n := round(x / log(2), 4).
71 vn -= vmagic_bias;
72
Marat Dukhanc60742b2020-11-23 12:33:27 -080073 // Compute reduced argument t := x - n * log(2).
74 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
75 float vt = vn * vminus_ln2_hi + vx;
76 vt = vn * vminus_ln2_lo + vt;
77
Marat Dukhane332dd62020-12-14 14:31:54 -080078 // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
79 // To guarantee this behaviour, we zero out s (scale) and t (reduced argument) for x <= sat_cutoff.
80 if XNN_UNPREDICTABLE(vx <= vsat_cutoff) {
81 vs = 0.0f;
82 vt = 0.0f;
83 }
84
Marat Dukhanc60742b2020-11-23 12:33:27 -080085 // Compute degree-4 polynomial approximation for exp(t) - 1 on [-log(2)/32, log(2)/32].
86 // P(t) = t * (1 + t * (c2 + t * (c3 + t * c4))) = t + t * (t * (c2 + t * (c3 + t * c4))) = t + t * p
87 float vp = vc4 * vt + vc3;
88 vp = vp * vt + vc2;
89 vp *= vt;
90
91 // Reconstruct the exp(x) - 1 value:
Marat Dukhande390d42020-11-29 19:32:18 -080092 // exp(x) - 1 = s * (1 + t * (1 + t * (c2 + t * (c3 + t * c4)))) - 1
Marat Dukhanc60742b2020-11-23 12:33:27 -080093 // = (s - 1) + s * (t + t * p)
94 // = ((t * s) + (t * s) * p) + (s - 1)
95 vt *= vs;
96 const float vsm1 = vs - vone;
97 vp = vp * vt + vt;
98 const float vf = vp + vsm1;
99
100 *output++ = vf;
101 }
102}