blob: 294d9e3e51547e4d3bb7e894ee202f417945634a [file] [log] [blame]
Marat Dukhan77221d32020-01-06 10:04:39 -08001// Copyright 2019 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6#include <assert.h>
7#include <stddef.h>
8
9#include <arm_neon.h>
10
11#include <xnnpack/common.h>
12#include <xnnpack/math-stubs.h>
13
14
Marat Dukhan1f256fc2020-09-24 21:27:14 -070015// Table of exp2(k / 2048) values decremented (as integer) by (k << 12), k = 0..2048
16extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048];
Marat Dukhan77221d32020-01-06 10:04:39 -080017
18void xnn_math_f32_sigmoid__neonfma_rr1_lut2048_p1_nr2fma(
19 size_t n,
20 const float* input,
21 float* output)
22{
23 assert(n % (4 * sizeof(float)) == 0);
24
Marat Dukhanc3001e12020-09-28 16:05:37 -070025 // Large number such that ulp(magic bias) == exp2(-11)
26 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p12f);
27 const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p0f);
28 // Mask for the lowest 11 bits
29 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
30 const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
Marat Dukhanb3fa13c2020-11-21 12:51:55 -080031 // Coefficient of polynomial approximation of exp(-t) ~ 1 + t * c1 on [-log(2)/2048, log(2)/2048]
Marat Dukhanc3001e12020-09-28 16:05:37 -070032 const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
33 const float32x4_t vone = vmovq_n_f32(1.0f);
Marat Dukhan77221d32020-01-06 10:04:39 -080034 // The largest z for which sigmoidf(-z) is normalized.
35 // This number is also the largest z for which expf(-z) is normalized.
36 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);
Marat Dukhan77221d32020-01-06 10:04:39 -080037
38 for (; n != 0; n -= 4 * sizeof(float)) {
39 const float32x4_t vx = vld1q_f32(input); input += 4;
40
41 // General structure of the algorithm:
Marat Dukhanc3001e12020-09-28 16:05:37 -070042 //
Marat Dukhan77221d32020-01-06 10:04:39 -080043 // / exp(x) / (1 + exp(x)) if x <= 0
Marat Dukhanef4ce312020-09-10 12:29:08 -070044 // f[x] :=
Marat Dukhan77221d32020-01-06 10:04:39 -080045 // \ 1 - f[-x] if x >= 0
46 //
47 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
48 // then replace result with 1 - f[-z] if x >= 0.
49 const float32x4_t vz = vabsq_f32(vx);
50
Marat Dukhanc3001e12020-09-28 16:05:37 -070051 // Compute reduced argument n := round(-z / log(2), 11).
52 // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
53 // the large number back. The trick with adding large number is valid only within certain bounds
54 // (|-z / log(2)| <= 2**11, i.e. |z| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x
55 // outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x). We fixup
56 // the result for such inputs at the very end of the algorithm.
57 float32x4_t vn = vfmaq_f32(vmagic_bias, vz, vminus_log2e);
Marat Dukhan77221d32020-01-06 10:04:39 -080058
Marat Dukhanc3001e12020-09-28 16:05:37 -070059 // Create a floating-point number s (scale) such that s := 2**n for such inputs that sigmoidf(-z) is normalized,
60 // i.e. 0 <= z <= 87.33642. As n has 11 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s
61 // in two steps:
62 // 1. Fetch 2**frac(n) from the table using the 11 low bits of n, as integer. Note that the fetched values are in
63 // the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
64 // 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
65 // number, because for 0 <= z <= 87.33642 (inputs for which sigmoidf(z) is normalized) we have
66 // -126 <= int(n) <= 0, and thus the adjusted exponent is not lower than -126.
Marat Dukhan77221d32020-01-06 10:04:39 -080067 //
Marat Dukhan1f256fc2020-09-24 21:27:14 -070068 // Shift bits 11:19 into 23:31 (position of floating-point exponent).
69 const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12);
Marat Dukhan77221d32020-01-06 10:04:39 -080070
Marat Dukhanb3fa13c2020-11-21 12:51:55 -080071 // Use bits 0:11 of n, as integer, as an index for table lookup of l := 2**frac(n).
Marat Dukhan94906132020-09-21 03:44:33 -070072 const uint64x2_t vidx = vreinterpretq_u64_s32(vshlq_n_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask), 2));
73 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
74 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
Marat Dukhan1f256fc2020-09-24 21:27:14 -070075 float32x2_t vl_lo = vld1_dup_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_2048 + (uint32_t) vidx_lo));
76 float32x2_t vl_hi = vld1_dup_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_2048 + (uint32_t) vidx_hi));
77 vl_lo = vld1_lane_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_2048 + (uint32_t) (vidx_lo >> 32)), vl_lo, 1);
78 vl_hi = vld1_lane_f32((const float*) ((uintptr_t) xnn_table_exp2minus_k_over_2048 + (uint32_t) (vidx_hi >> 32)), vl_hi, 1);
Marat Dukhan94906132020-09-21 03:44:33 -070079 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
Marat Dukhan77221d32020-01-06 10:04:39 -080080 // Adjust exponent of the value l fetched from the table to get the final s value.
81 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
82
Marat Dukhanc3001e12020-09-28 16:05:37 -070083 // Subtract the large number back to get the final n := round(-z / log(2), 11) as a floating-point number.
Marat Dukhan77221d32020-01-06 10:04:39 -080084 vn = vsubq_f32(vn, vmagic_bias);
85
Marat Dukhanc3001e12020-09-28 16:05:37 -070086 // Compute reduced argument t := (z + n * log(2)). Note that -t = -z - n * log(2).
87 float32x4_t vt = vfmaq_f32(vz, vn, vln2);
Marat Dukhan77221d32020-01-06 10:04:39 -080088
Marat Dukhanb3fa13c2020-11-21 12:51:55 -080089 // Compute degree-1 polynomial approximation for exp(-t) on [-log(2)/2048, log(2)/2048]:
Marat Dukhanc3001e12020-09-28 16:05:37 -070090 // P(t) = 1 + t * c1 = 1 + p
Marat Dukhan77221d32020-01-06 10:04:39 -080091 const float32x4_t vp = vmulq_f32(vt, vc1);
92
93 // Reconstruct the exp(-z) value:
Marat Dukhanc3001e12020-09-28 16:05:37 -070094 // e = s * (1 + t * c1)
95 // = s * (1 + p)
Marat Dukhan77221d32020-01-06 10:04:39 -080096 // = s + s * p
97 const float32x4_t vy = vfmaq_f32(vs, vs, vp);
98
99 // Denominator of the sigmoid fraction: 1.0 + exp(-z)
100 const float32x4_t vd = vaddq_f32(vy, vone);
101
102 // Use Newton-Raphson method (2 iterations) to compute reciprocal of denominator.
103 // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
104 // Thus the reciprocal of the denominator never overflows.
105 float32x4_t vr = vrecpeq_f32(vd);
106 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
107 vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
108
109 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
110 float32x4_t vf = vmulq_f32(vy, vr);
111
112 // For inputs below denormal cutoff, replace output with +0.0f.
113 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
114 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
115
116 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
Marat Dukhan26cda6d2020-01-09 13:54:32 -0800117 const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
Marat Dukhan77221d32020-01-06 10:04:39 -0800118 vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
119
120 vst1q_f32(output, vf); output += 4;
121 }
122}